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ABSTRACT

Major reservoir development decisions are often based on results of numerical

simulation of oil reservoirs.  Partial differential equations (PDEs) derived from material

balance coupled with Darcy’s law are solved in the simulator.  The speed and efficiency

of the simulator are determined to a large extend by the efficiency of the linear solver,

which is usually ultimate step in the solution of the system PDEs.  In this work, the

efficiency of the following linear solvers was examined on shared and distributed

memory parallel machines: the line successive over relaxation, Bi-conjugate gradient

stabilized (Bi-CGSTAB), the restarted generalized minimum residual and the transpose

free quasi minimal residual (TFQMR) methods.  All the methods except the Bi-CGSTAB

were stable and exhibited fast convergence behavior.  Of the conjugate gradient like

methods, TFQMR appeared to be the best.  Considerable speedup (factor of about 4 with

eight processors) was observed on shared and distributed memory machines.

Naturally fractured oil reservoirs have been simulated using the conventional dual

porosity (dual permeability) and single porosity models.  Even though these techniques

have served the practical purpose of simulating real reservoirs, it is recognized that it is

impossible to represent fractures, spatially accurately through these approaches.  A

discrete fracture model was developed as an alternative to these conventional simulation

methods.  In a two-dimensional test problem, lines represented fractures while the matrix

space was discretized into triangular elements.  Results from this model were compared
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to simulation results using a variety of homogenization methods. At high permeability

contrast (between the matrix and the fracture) and high flow rates (injection), the discrete

fracture model captured the explicit features of the fractures, which the homogenization

method failed to reproduce.  Fully implicit formulation of the discrete fracture model

resulted in a system of nonlinear equations, which were solved using the inexact

Newton’s scheme.  The inexact scheme, which utilized the agreement between the

function and its local linear model, was found to be significantly better than the methods

that arbitrarily fixed the level of inexactness.  A successful parallel implementation of the

discrete fracture model using domain decomposition was achieved on both SGI Power

Challenge and SGI Origin 2000.
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CHAPTER 1

INTRODUCTION

Oil reservoir simulation is an established technique used in the petroleum industry

to assess the quality of reservoirs and to plan production strategies.  Classical reservoir

engineering deals with the reservoir on a gross average basis (tank model) and cannot

account adequately for the variations in reservoir and fluid parameters in space and time.

Reservoir simulation on computers allows a more detailed study of a reservoir by

segmentation into a number of blocks and by applying fundamental equations of flow in

porous media to each block.  The governing flow equations describe fluid and pressure

distributions in the porous medium (which represents the reservoir).  The laws governing

flow in porous media are based on the conservation of mass, momentum and energy and

are discussed in detail in numerous books (Bird et al., 1960).  From a practical standpoint,

the semiempirical Darcy’s law is broadly used in place of the momentum balance

equation (Aziz and Settari, 1979).  The hydrocarbon system of multiphase flow is usually

restricted to the so-called black oil model where the system is approximated by three

components, a nonvolatile component (black oil), a volatile component (gas) soluble in

the oil phase and a water phase.  In the black oil model, the oil-gas phase behavior is

represented by formation factors and solution gas-oil ratio curves and additional mass
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transfer of oil components from liquid to gas is not considered in the model (Aziz and

Settari, 1979).  The fluid approximations of this model are found to be acceptable for a

large percentage of the world’s oil reservoirs.  Thus, black oil simulators have a wide

range of applicability and are routinely used for solving field production problems

(Chang et al., 1992).

Once the governing equations for a model of oil reservoir are set up, then efficient

methods for solving the partial differential equations are sought.  If the reservoir is

defined using a geologic model, the fine detail is generated using a variety of geological

data such as seismic information, well logs, and core interpretation.  The model typically

has several million grid cells.  The numerical simulation, however, consolidates these

grid blocks into several tens to several hundreds of upscaled model cells with effective

reservoir properties.  Fine resolution simulation requires considerable computational

time.  Hence, the first objective of this research effort was to apply the parallel,

multiprocessor computing method to oil reservoir simulation.

Efficient parallel linear and nonlinear solvers lie at the core of the simulator since

linear and nonlinear equations are solved several times for every time step during

simulation.  Thus, minor improvements in the efficiency of a solver will usually add up to

significant improvements in the computational time for the entire simulation.  With

respect to linear solvers (examined in Chapter 2), the idea was to screen all of the modern

linear solvers, both stationary and nonstationary, and select the one most appropriate for

oil reservoir simulation.  When a fully implicit scheme is used to provide unconditional

stability to oil reservoir simulation, discretization of the partial differential equations

result in a set of nonlinear algebraic equations to be solved at every time step.  The most
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popular choice for the solution of these nonlinear equations is the Newton’s method.

Although Newton’s method can be applied in solving the equations, computing the exact

solution using a direct method at each stage of the Newton’s iteration, can be expensive

in a simulation having a large number of unknowns.  For reducing this computational

cost, one of the project goals was to examine the inexact Newton’s method developed

recently (Eisenstat and Walker, 1996).  The main idea behind this method is the inexact

step, which saves the most computationally expensive part of computing the exact

solution in Newton’s iterations.  The methods are also better streamlined for exploiting

parallel implementation.  Methods development and results are presented in Chapter 4.

Most oil reservoirs are fractured to a certain degree.  The simulation of fluid flow

through these naturally fractured oil reservoirs is a challenging problem due to the

randomly shaped and distributed fractures.  Research on fractured oil reservoir simulation

has a history that spans nearly four decades.  This involves development of a number of

conceptual models describing flow in fractured media.  Unfortunately, the models most

currently used for fractured reservoir simulation do not explicitly consider the spatial

fracture characterization.  Instead, these conventional models smear out the fracture

presence in either a dual continuum model (Kazemi, 1969) or a single continunm,

equivalent property model (Watts, 1997).  Conventional methods do not allow

incorporation of fracture geometries and other attributes explicitly.  Thus, the other

primary project objective was to create a computational framework for the modeling of

“discrete” fractures in reservoir simulation. In the discrete-fracture modeling approach,

each individual fracture can be represented explicitly.  A finite element formulation was

chosen to handle the complex geometry of the discrete fracture system.  Model
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development and comparisons with the homogenization (upscaling) approaches are

presented in Chapter 3.  Solution of this complex geometric problem is also

computationally intensive and appropriate parallel computing methods are desired, which

is the topic of Chapter 5.

 Although there have been a number of implementations of parallel computing in

reservoir simulation (Killough, 1993 and Rame and Delshad, 1995), standards have not

been established because the development has been machine specific and not portable.  In

this study, the Message Passing Interface (MPI) is used to provide the portability (Gropp

et al., 1995).  MPI, a standard portable message passing library was developed recently

(1994) through collaboration of application scientists and people in the computer

industry.  MPI is a specification for a library of routines to be called from C or

FORTRAN programs.  Any FORTRAN or C code can be made parallel using this

standard library of commands.  In parallel computing, the memory that is required for the

computational task may be shared among processors (shared memory computation) or

could be distributed among different processors (distributed memory computation).

Parallel implementation of the newly developed model was undertaken on shared

memory and distributed-shared memory machines.  Details of parallel implementation

are the subjects of Chapter 2 (finite difference model) and Chapter 5 (finite element

model) for regular and irregular grid systems.

Main objectives of this research are summarized below.

• To incorporate efficient linear solvers (using both the stationary and nonstationary

       methods) into reservoir simulation, particularly black oil reservoir simulation.

• To solve the nonlinear equations resulting due to the implicit formulation of the partial

      differential equations using the more advanced Inexact Newton’s Krylov subspace
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      methods.

• To implement the above algorithms on parallel processors using standardized MPI

       protocol.

• To develop a discrete fracture, finite element, multiphase model using efficient nonlinear

      and linear equations solution algorithms.

• To test the finite element model on multiple processors.



CHAPTER 2

PARALLEL ITERATIVE LINEAR SOLVERS

FOR OIL RESERVOIR SIMULATION

2.1 Introduction

Parallel computing methods applied to oil reservoir simulation improve the ability

of the simulators in representing fine scale reservoir geology.  One of the critical issues in

the parallelization process is the solution of linear matrix systems arising from

subdividing a single reservoir and assigning decomposed reservoir domains to multiple

processors.  This chapter presents a study of parallel iterative solutions of the linear

matrix systems occurring in the parallel implementation of oil reservoir simulation.  The

matrices created by the discretization of the partial differential equations are sparse,

unsymmetrical systems of equations, which can be written as:

                                                         bAp =                                                          (2.1)

Typical linear equations system in parallel oil reservoir simulation involves

complex grids with hundreds of thousands of cells having one or more unknowns.

Because the solution of these linear systems consumes vast computational resources,
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efficient parallel linear solvers that provide speed, flexibility, and reliability are of great

importance.  Although modern direct solvers provide fast and robust solutions, this study

is focused on iterative methods, which are substantially superior for a large number of

linear equations.  The iterative methods examined here were as follows:

• Stationary method

Linear Successive Over Relaxation (LSOR) method (Chang et al., 1992)

• Nonstationary methods

The stabilized version of the Bi-Conjugate Gradient (Bi-CGSTAB) method (Van Der

Vorst, 1992)

The Restarted Generalized Minimal Residual (RGMRES) method (Saad and Schultz,

1986)

The Transpose Free Quasi Minimal Residual (TFQMR) method (Freund, 1993)

In solving the linear system of equation 2.1, iterative methods of the form,

pm+1=M pm + c are called stationary methods because the iteration from pm to pm+1  does

not depend on the history of the iteration.  In the above equation, M is the iteration

matrix.  The stationary iterative solvers such as Jacobi and Gauss-Seidel line relaxation

methods have the problem of pipelined solution on multiple processors.  However, LSOR

method in this study is based on the idea that the concurrent matrix solvers to avoid the

cost of pipelining in parallel environment replace the sequential matrix solvers (Hofhaus

and Van De Velde, 1996).  The method is relatively simple to implement and provides

reasonable parallel performance.

Conjugate-gradient-like methods (also known as Krylov subspace methods) are

the most prominent nonstationary iterative techniques, where information of the iteration
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matrix affecting computations changes at every iteration step.  Unlike the stationary

iterative methods, Krylov subspace methods minimize some measured error over a space

pinitial + κ, where pinitial is the initial iterate and κ is the Krylov subspace.  An appropriate

preconditioning procedure is essential for the success of these methods.  Based on

effectiveness and simplicity, the Gauss-Seidel preconditioner was chosen in this study.  In

this chapter, a brief overview of the iterative methods is presented and the parallel

performance of iterative linear solvers is studied for oil reservoir simulation.  The

application is three-dimensional and three-phase black oil simulation. The equations were

discretized by finite difference method using implicit pressure and explicit saturation

(IMPES) scheme (Aziz and Settari, 1979 and Chang et al., 1992).

2.2 Governing equations

The differential equations and the subsequent difference equations, which can be

derived combining the material balance with Darcy’s law, are given by:

Oil phase: ( )( )
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Capillary pressures: wcow PPP −= 0 , ogcgo PPP −=                                                   (2.5)

Phase saturation: 1=++ gwo SSS                                                                           (2.6)

In these equations, Pl (pressure of phase l) and Sl (saturation of phase l) are the primary

dependent variables to be solved for each phase.  The idea of IMPES scheme is to derive

a single pressure equation by combining the flow equations 2.2, 2.3, 2.4, 2.5 and 2.6.

Once the pressure equation is solved implicitly, the saturations are explicitly updated by

substituting the results in the flow equations 2.2, 2.3 and 2.4.  The pressure equation is

written as (Aziz and Settari, 1979 and Chang et al., 1992):
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In this equation, the total compressibility ct is defined as:
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The finite difference form of the pressure equation can be expressed in the following

seven-point stencil.

kjikjikjikkkkjjjjiiii bPEPATPABPASPANPAWPAE ,,,,,,111111 =++++++ −+−+−+          (2.9)
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which has the matrix form of equation 2.1 (Ap=b).  The coefficients are:
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Here, the differential operator is defined as:



11

)]()([
)(

2

)]()([
)(

2

)]()([
)(

2~

,,1,,
2
1

,,,
,,1,,

2
1

,,,
11

,,,1,,
2
1,,,,,1,,

2
1,,

11

,,,,1
,,

2
1

,
,,,,1

,,
2
1

,
11

kjikji
kjil

kjikji
kjil

ii

i

kjikjikjilkjikjikjil
ii

i

kjikji
kjil

kjikji
kjil

ii

i
ll

ppTppT
zz

z

ppTppT
yy

y

ppTppT
xx

x
PT

−+−
−
∆

+−+−
−
∆

+−+−
−
∆

=∇⋅∇

+
=

−
−

−+

+−−−
−+

+
=

−
−

−+

  (2.11)

The phase (l) transmissibility between grid block i-1 and grid block i is given by:
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Note that the finite difference transmissibility of the phase l lT
~

 was defined as:
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2.3 Parallel domain decomposition

Domain decomposition method has conventionally been used to solve the linear

matrix system of equation 2.9 (Ap=b) on multiple processors.  In this approach, the grid

cells of the reservoir system are subdivided onto different processors.  Then, the data

communication occurs for the boundary grid cells, which are dependent on the grid cells

of other processors. Examining the structure of regular grid system used in finite
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difference method, the domain can be decomposed using three different techniques as

follows.

• One-dimensional partitioning: The data set is partitioned along columns and the

parallel communication is required in a single direction.

• Two-dimensional partitioning: The data set is partitioned along rows and

columns, also known as panel partitioning.  Data communication is required on two

faces of a three-dimensional box.

• Three-dimensional partitioning: In this method, the data set is partitioned along all

the faces of the three-dimensional box.   The data communication then occurs in all

the three directions.

The three methods are illustrated in Figure 2.1.  The simplest of the approach is

the one-dimensional decomposition scheme and the most complex is the three-

dimensional domain decomposition method.  A dimensionality of domain decomposition

increases so does the communication requirement (Figure 2.1).  Once the problem

domain is decomposed on multiple processors, each processor is responsible for

computations in its respective domain.  A processor communicates with others only if

data is nonlocal.  For example, Figure 2.2 shows a three-dimensional finite difference

domain consisting a 3 × 2 × 2 grid system which is split by a horizontal plane (x-y) into

two processors.  The first horizontal layer is assigned to the first processor and the second

layer is allocated to the second processor.  Processor I will be required to obtain the

information at the grid cells, (1~3, 1~2, 2), and Processor II needs to update information

at points, (1~3, 1~2, 1).  Resulting from the domain decomposition, the subsequent

structure of linear matrix system of equation 2.9 is also shown in Figure 2.2.  The domain
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Figure 2.1 The domain decomposition schemes for multiprocessor reservoir simulation

decomposition in z-direction attributes the elements ABi,j,k and ATi,j,k coupled in two

processors.  Thus, all the information to make these matrix elements is supposed to be

exchanged in the two processors.  Resulting from the parallel domain decomposition, the

parallel communication required in the operations of linear matrix system distributed

over multiple processors is discussed in the following section.  MPI library provides the

tools necessary to assign each processor to the decomposed subdomains of regular grid

systems for better performance.  MPI tools are provided in the Appendix A.

2.4 Overview of parallel linear solvers

The study chooses four representative linear solvers for both stationary and

nonstationary iterative methods; LSOR, Bi-CGSTAB, RGMRES and TFQMR methods.

Basic features and algorithms of these methods are well known in literatures (Press et al.,

1-D decomposition 2-D decomposition 3-D decomposition

: The faces of coupled grids (communication required)
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Figure 2.2 The structure of the heptadiagonal matrix for a 3×2×2system that has been

divided among two processors.

E(1,1,1) AE(1,1,1) AN(1,1,1) AB(1,1,1) P(1,1,1) b(1,1,1)

AW(2,1,1) E(2,1,1) AE(2,1,1) AN(2,1,1) AB(2,1,1) P(2,1,1) b(2,1,1)

AW(3,1,1) E(3,1,1) AN(3,1,1) AB(3,1,1) P(3,1,1) b(3,1,1)

AS(1,2,1) E(1,2,1) AE(1,2,1) AB(1,2,1) P(1,2,1) b(1,2,1)

AS(2,2,1) AW(2,2,1) E(2,2,1) AE(2,2,1) AB(1,2,1) P(2,2,1) b(2,2,1)

AS(3,2,1) AW(3,2,1) E(3,2,1) AB(1,2,1) P(3,2,1) b(3,2,1)
AT(1,1,2) E(1,1,2) AE(1,1,2) AN(1,1,2) P(1,1,2) b(1,1,2)

AT(2,1,2) AW(2,1,2) E(2,1,2) AE(2,1,2) AN(2,1,2) P(2,1,2) b(2,1,2)

AT(3,1,2) AW(3,1,2) E(3,1,2) AN(3,1,2) P(3,1,2) b(3,1,2)

AT(1,2,2) AS(1,2,2) E(1,2,2) AE(1,2,2) P(1,2,2) b(1,2,2)

AT(1,2,2) AS(2,2,2) AW(2,2,2) E(2,2,2) AE(2,2,2) P(2,2,2) b(2,2,2)

AT(1,2,2) AS(3,2,2) AW(3,2,2) E(3,2,2) P(3,2,2) b(3,2,2)

× =

Processor II
Processor I

: Coupled elements of linear matrix system between two processors (communication is required).
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1992, Van Der Vorst, 1992, Saad and Schultz, 1986 and Freund, 1993).  Additional to a

brief overview of each linear solver, the following subsections address the issues

involved in conversion of the iterative methods to parallel codes.

2.4.1 Stationary LSOR method on multiple processors

To solve the linear matrix system of equation 2.9 (A p = b), the LSOR method

used in this study are started by splitting the coefficient matrix A (here, heptadiagonal

matrix) into

                                                               HGA +=                                                   (2.14)

Here G is a matrix that can easily be inverted.  This defines the iteration

                                                      1−−= mm HpbGp                                                   (2.15)

where Pm converges to the exact solution p* and Pm-1 is the pressure value from previous

iteration.  For example, if a x-line LSOR is a set of grid points (i, j, k) where 1 ≤ i ≤ I, 1 ≤

j ≤ J and 1 ≤ k ≤ K, the linear matrix system of equation 2.9 will reduce to the tridiagonal

system

                                  AWi,j,k pi-1,j,k + Ei,j,k pi + AEi,j,k  pi+1  =  bi,j,k – Hpi,j,k               (2.16)

In matrix-vector notation, this system has the form
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                                                            1−−= mHpbGp                                       (2.17)

with
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Here, the matrix H contains the other elements of the heptadiagonal matrix system;

ANi,j,k, ASi,j,k, ATi,j,k and ABi,j,k.  The advantage of the tridiagonal system of equations is

that there are a number of solver subroutines available for such systems in computational

libraries like LAPACK.  For an example of tridiagonal system on multiple processors,

suppose that a domain (I = 6) is partitioned in i or x direction such that half of the data

nodes are assigned to one processor and the other half are assigned to a second processor.

The data distribution over two processors in the x-direction forces us to solve the

following distributed tridiagonal matrix system for the x-line LSOR method.
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If the classical sequential solver (referred to as Thomas algorithm) is used to solve the

above matrix system, the structure of the system indicates that processor I (AE3) requires

a data (P4) from processor II and processor II (AW4) is required to wait until processor I

updates the data (P3).  Thus, processor II is an idle processor while processor I sweeps its

own domain in a sequential algorithm.  As an alternative to this pipelining solution

scheme, Hofhaus and Van De Velde (1996) suggested an iterative method to replace the

sequential tridiagonal solver by a concurrent tridiagonal solver.  For the purpose of

concurrent parallel computing, the method constructs tridiagonal systems independent of

one another so that they can be solved simultaneously.  The new matrix systems can be

obtained where matrix G contains only globally uncoupled tridiagonal blocks.  All the

other coefficients crossing process boundaries are carried over to matrix H, which may

additionally contain the matrix coefficients split from the x-line LSOR scheme.   This

requires the linear matrix system of equation 2.18 to be split Guncoupled + Hcoupled, as follows:

1m
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AEE
EAW
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AEE

(2.19)

This splitting of the coefficient matrix defines the iteration

                                               1−−= mcoupledmuncoupled pHbpG                                         (2.20)

A parallel implementation of the iteration is easily obtained as follows:

Processor I

Processor II
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1. G contains only uncoupled matrices and its inversion is trivially concurrent.

2. The parallel matrix-vector operation b - Hcoupled pm-1 is performed with only the

nearest-neighbor communication.

3. The solution of the local linear system of equations is started independently on

multiple processors.

4. The right-hand side terms are updated by communicating the first and the last row in

each process.

5. The iteration is continued until some stopping criterion is satisfied.

Hofhaus and Van De Velde (1996) suggested this method.  With this iterative method,

the concurrent solution scheme of LSOR method can be implemented on multiple

processors.  Since all the processors start working on the system of equations

simultaneously, there are no idle processors.  In the parallel implementation, the updated

pressure values (P3 and P4) of equation 2.19 can be communicated using MPI library as

follows.

include 'mpif.h'

integer status(MPI_STATUS_SIZE,4),er(4)

Parameter (ni=3)

common /Prtp/ P(0:ni+1)

integer top,bottom

common /neigh/ top,bottom

call MPI_ISEND(p(1),1,MPI_REAL,top,0,MPI_COMM_WORLD,er(1),info)

call MPI_ISEND(p(3),1,MPI_REAL,bottom,0,MPI_COMM_WORLD,er(2),info)

call MPI_IRECV(p(0),1,MPI_REAL,top,0,MPI_COMM_WORLD,er(3),info)

call MPI_IRECV(p(4),1,MPI_REAL,bottom,0,MPI_COMM_WORLD,er(4),info)

call MPI_WAITALL(4,er,status,info)
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This communication must occur before each processor performs the next

iteration.  The pseudo code for the method is given in Figure 2.3.  The basic steps

involved in using MPI tools are provided in the Appendix A.

2.4.2 Nonstationary parallel Krylov subspace methods

The idea of conjugate gradient iteration was invented in the 1950s (Hestenes and

Stiefel, 1952 and Fletcher, 1976).  The basic process in each of the conjugate-gradient-

like methods is the projection of the original set of equations onto a subspace (the so-

called Krylov subspace).  In the projection onto Krylov subspace, the following quadratic

function is minimized by the solution of equation 2.1 or the solution of pressure equation

2.9 derived by IMPES scheme in this study.

                                             cpbApppF TT +−=
2
1

)(                                       (2.21)

To solve linear matrix system Ax = b.

1. xo is an initial guess

2. Set A = G + H

For k = 1, 2, …

3. Solve G xk = b – H xk-1

4. Check stopping criterion

Endfor

               Figure 2.3 The LSOR method
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In the minimization of equation 2.21, a Krylov subspace method seeks an approximate

solution pm from different choices of Krylov subspaces of the form

                                           },...,,,{ 0
1

0
2

00 rArAArrspan mm −=κ                              (2.22)

in which approximate solution is searched by a vector of the form

                                    00
)( rApolynomialppm +=                                       (2.23)

Among different versions of the Krylov methods, the study examined parallel

performance of minimal residual methods (RGMRES and TFQMR) and bi-conjugate

gradient method (Bi-CGSTAB) in solving the linear matrix system of equation 2.9.

In the family of minimal residual methods, the generalized minimal residual

method (GMRES) is the most popular.  At the start, a GMRES is much like any

conjugate-gradient method with the residuals forming an orthogonal basis for the Kylov

subspace in the form of om rAPolynomialr )(= .  For the implementation of GMRES in

the study, the so-called Anoldi orthogonalization method (Kelley, 1995) is used to project

an approximate solution vector in the Krylov subspace.  But the method is storage

intensive to retain all previously computed vectors of orthogonal projection onto the

Krylov subspace.  For this reason, restarted version of the method is often employed.  In

the following section, GMRES(m) refers to GMRES restarted after every m iterations.

The pseudocode for the restarted GMRES (m) algorithm with preconditioner Q1 is given

in Figure 2.4.
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To solve linear matrix system Ax = b.

1. xo is an initial guess
2. )(1 oo AxbQr −=

3. oo r=β
for k = 1, 2, …

4. ( )T
kkg ⋅⋅⋅= −− ,, 11 ββ

5. 111 / −−= kkrV β
for j = 1, 2, …, m

6. jiAVQVR j
T

iji ,...,1,1, ==

7. ∑
=

−
−=

j

i
ijij VRAVQ

1
,1υ

8. υ=+ jjR ,1

9. jjj RV ,11 / +

−

+ = υ

10. apply previous Given’s rotations to jR:,

11. compute Given’s rotation to zero jjR ,1+

12. apply Given’s rotation to g
13. check stopping criterion to g

endfor
14. solve gRy =
15. Vyxx kk += −1  form iterative solution
16. )(1 kk AxbQr −=

17. kk r=β
endfor

Figure 2.4 The preconditioned GMRES(m) method

When the residual polynomial reduces ro to a smaller vector rm in the Krylov

subspace methods, the bi-conjugate-gradient-stabilized method (Bi-CGSTAB) is based

on the idea of further contraction of this operation.  Bi-CGSTAB applies the contraction

polynomial twice using the polynomial describing the steepest descent update.  This

further contraction can lead a considerably smoother convergence behavior at least
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locally.  However, if the Krylov subspace is not expanded, and Bi-CGSTAB will

breakdown.  The psuedocode for the method with preconditioner Q1 is given in Figure

2.5.

While the Bi-CGSTAB method often displays irregular convergence behavior,

another related algorithm, the transpose-free-quasi-minimal-residual method (TFQMR)

attempts to overcome the problem.  The main idea behind this algorithm is to minimize

the norm of a quasi-residual, which can be related to the true residual by a linear

To solve linear matrix system Ax = b.

1. xo is an initial guess
2. )(1 oo AxbQr −=

3. oo rr =
4. 0== oop υ
5. 1=== ooo ωαρ

for k = 1, 2, …

6. 1−= k

T
ok rrρ

7. )/( 111 −−−= kkkkk ωραρβ
8. )( 111 −−− −+= kkkkkk prp υωβ
9. kk ApQ1=υ

10. kok r υξ =
11. kkkk rs υα−= −1

12. if ||sk|| ≤ tolerance, breakdown is occurred.
13. kk AsQt 1=

14. k
T
kk

T
kk ttst /=ω

15. kkkkkk spxx ωα ++= −1

16. kkkk tsr ω−=
17. check stopping criterion

endfor

Figure 2.5 The preconditioned BiCGSTAB method
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transformation.  In addition to the idea of quasi-minimal-residual minimization, TFQMR

uses look-ahead techniques to avoid breakdowns due to the indefiniteness of underlying

vectors in searching the solution vector of equation 2.21.  The psuedocode for the method

with preconditioner Q1 is given in Figure 2.6.

When Krylov subspace methods are implemented on multiple processors, parallel

communications involving the following basic matrix operations are required.

• Matrix vector multiplications

• Updating vectors

• Dot products of vectors

• Operations of local preconditioner

Matrix and vector operations of the linear matrix system of equation 2.9 are

organized as follows.  The domain configuration of Figure 2.2 is taken for an example.

To compute matrix-vector product, each processor exchanges with its neighbor the grid

points in the interface of the processors.  In Figure 2.2, AB(1~3,1~2,1) of processor I

requires the P(1~3,1~2,1) from processor II and AT(1~3,1~2,2) of processor II needs to

obtain the P (1~3,1~2,1) from processor II.  Equation 2.9 is then applied independently

by each processor at its local grid points, except at the local interfacing points.  After the

interfacing grid points from neighboring processors have arrived at each processor.

Equation 2.9 is fully applied using the interfacing points from the neighboring processors.

The example below is taken for a matrix-vector product routine using MPI library.

 include 'mpif.h'

 integer status(MPI_STATUS_SIZE,4),er(4)

 Parameter (ni=3, nj=2, nk=1)
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To solve linear matrix system Ax = b.

1. xo is an initial guess
2. )(1 oo AxbQr −=

3. ooo rywr ==== 11ρ
4. 11AyQvg o ==
5. 0=== oood ηθ

6. oo r=τ
for k = 1, 2, …

7. 11 −− = k

T
ok vrσ

8. 111 / −−− = kkk σρα
9. kAyQh 21=

for m = 2k-1, 2k
10. gww kmm 11 −+ −= α

11. 11 / −+= mmm w τθ

12. mmc θ+= 1/1

13. mmmm cθττ 1−=

14. 1
2

−= kmm c αη
15. kk AsQt 1=

16. ( ) 111
2

1 / −−−−+= mkmmmm dyd αηθ
17. mmmm dxx η+= −1

18. check stopping criterion
19. hg ←

endfor

20. 12 += k

T
ok wrρ

21. 1/ −= kkk ρρβ
22. kkkk ywy 211212 β+= −++

23. 121 += kAyQg
24. )( 1−++= kkkk vhgv ββ

endfor

Figure 2.6 The preconditioned TFQMR method
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 common /Prtp/ P(0:ni+1,0:nj+1,0:nk+1)

 COMMON /COEF/ AW(ni,nj,nk), AE(ni,nj,nk), AN(ni,nj,nk), AS(ni,nj,nk),

&             AB(ni,nj,nk), AT(ni,nj,nk),  E(ni,nj,nk),  B(ni,nj,nk)

 integer top,bottom

 common /neigh/ top,bottom

call MPI_TYPE_VECTOR(nj+2,ni+2,ni+2,MPI_REAL,k_type,info)

call MPI_TYPE_COMMIT(k_type,info)

call MPI_ISEND(p(0,0,1),1,k_type,top,0,MPI_COMM_WORLD,er(1),info)

call MPI_ISEND(p(0,0,nk),1,k_type,bottom,0,MPI_COMM_WORLD,er(2),info)

call MPI_IRECV(p(0,0,0),1,k_type,top,0,MPI_COMM_WORLD,er(3),info)

call MPI_IRECV(p(0,0,nk+1),1,k_type,bottom,0,MPI_COMM_WORLD,er(4),info)

call MPI_WAITALL(4,er,status,info)

 do k=1,nk

 do j=1,nj

 do i=1,ni

 IM=i-1

 IP=i+1

 JM=j-1

 JP=j+1

 KM=k-1

 KP=k+1

 b(i,j,k)=AW(i,j,k)*P(IM,j,k) + AE(i,j,k)*P(IP,j,k)

&         AN(i,j,k)*P(i,JP,k) + AS(i,j,k)*P(i,JM,k)

&         AB(i,j,k)*P(i,j,KP) + AT(i,j,k)*P(i,j,KM)

&          E(i,j,k)*P(i,j,k)

 enddo

 enddo

 enddo
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 call MPI_TYPE_FREE(k_type,info)

The other computations of matrices and vectors are performed in a similar fashion.

Exchanging information of grid cells with neighboring processors were satisfied by

communication functions in MPI library allowing the local matrix and vector operations

to be implemented in a conventional fashion.  For more detail of MPI tools, refer to the

Appendix A.

2.4 Numerical results

The parallel performance of the program was tested on a typical black-oil three-

dimensional problem (Table 2.1).  Relative permeabilities and capillary pressures used in

test simulations are shown in Table 2.2.  Other basic properties (viscosities, oil and gas

formation volume factors, gas oil ratio, etc) are provided in Table 2.3.  To measure

parallel performance, speedup was calculated as follows.

                   Speed up(n)  =  cpu time on 1 processor / cpu time on n processors   (2.24)

For the test run, pinitial  = 0 is always chosen as initial guess.  The iteration was then stopped

when the converge criterion, ||A pk - d|| / ||A po - d||=10-5 was satisfied.  Three restarts were

used for GMRES, since the work and storage per iteration were roughly comparable to

other methods.

The convergence behavior of the four parallel linear solution methods is shown in

Figure 2.7.  A black-oil model with a total of 128,000 grid blocks (80 × 80 × 20) was

chosen for this numerical experiment.  The BiCGSTAB shows divergent behavior.
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Table 2.1 Description of black oil model problem

Grid spacing,   delta x, m

                        delta y, m

                        delta z, m

3

3

6

Absolute permeability, kxx, mD

                                      kyy, mD

                                      kzz, mD

200

200

200

Porosity, fraction 0.2

Initial pressure, atm 102

Initial saturations,  So

                               Sw

0.8

0.2

Bubble point pressure, atm

Stock tank oil density, g/cm3

Stock tank water density, g/cm3

Stock tank gas density, g/cm3

68

0.85

1.0

0.001
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Table 2.2  PVT properties for black oil model problem

Pressure

Atm

Bo

RC/STC

Bw

RC/STC

Bg

RCF/SCF

Solution Gas

SCF/STC

µo

cp

µw

cp

µg

cp

1 1.022 1.00 1.053 1.4 8.8 1.0 0.0108

24 1.064 1.00 0.027 89 4.6 1.0 0.0116

68 1.118 1.00 0.012 203 2.9 1.0 0.0133

102 1.177 1.00 0.007 329 2.1 1.0 0.0162

136 1.240 1.00 0.005 464 1.6 1.0 0.0201

170 1.306 1.00 0.004 604 1.3 1.0 0.0243

204 1.375 1.00 0.003 751 1.1 1.0 0.0281
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Table 2.3 Relative permeabilities and capillary pressures employed for black oil model

problem

Saturation Kro Krw Krg Pcowatm Pcgoatm

0.0 0.00 0.00 0.000 31 31

0.1 0.00 0.00 0.000 24 24

0.2 0.00 0.00 0.003 15 15

0.3 0.10 0.10 0.009 7 7

0.4 0.20 0.20 0.020 3 3

0.5 0.40 0.40 0.100 0.50 0.50

0.6 0.60 0.60 0.300 0.45 0.45

0.7 0.80 0.80 0.750 0.27 0.27

0.8 0.90 0.90 1.000 0.27 0.27

1.0 1.00 1.00 1.000 0.27 0.27
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Figure 2.7 Convergence curves of iterative linear solvers for problem of (80,80,20) grids
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TFQMR and GMRES(3) show the most rapid convergence.  When multiple processors

are used, the parallel performance of linear solvers may be compromised.  To test this, a

36 × 80 × 20 grid was employed in the study of parallel performance of each linear

solver.  Parallel TFQMR was tested on multiple processors.  Figure 2.8 shows the parallel

convergence behavior of TFQMR method on SGI Power Challenge.  The convergence

does slow down with multiple processors; however, the slow down is not significant.  As

the number of processors (nodes) increase, the performance gets only marginally worse,

even though considerably more iterations are required when two processors are employed

instead of one.  The total speedup on multiple processors for three best parallel linear

solvers (found in this study) is shown Figures 2.9, 2.10 and 2.11 where the composite

computational time, and computational time for linear solver and matrix construction are

shown.  The overall performances of TFQMR and LSOR are comparable with TFQMR

being marginally better.  However, LSOR parallel implementation is much simpler than

TFQMR. The parallel performance was also tested on a distributed memory machine

(IBM SP2).  The overall parallel performances and speedup for linear solution and matrix

construction are shown in Figures 2.12, 2.13 and 2.14.  The matrix computation speedup

contributes more to the composite speedup in the case of the distributed memory machine

in comparison to the shared memory machine.  Different types of domain decomposition

schemes were also studied on the shared memory SGI Power Challenge.  The one-

dimensional domain decomposition, in general, provided better speedup than either two-

or three-dimensional divisions shown in Table 2.4
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Figure 2.8 Convergence curves of TFQMR method for test problem of (36,80,20) grids

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15 16 1 7

Iterations

R
e

si
d

u
a

l

1 node

2 nodes

3 nodes

4 nodes



33

Figure 2.9 Speedup of LSOR on shared memory machine, SGI Power Challenge :

(36,80,20) grids
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Figure 2.10 Speedup of GMRES(3) on shared memory machine, SGI Power Challenge :

(36,80,20) grids
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Figure 2.11 Speedup of TFQMR on shared memory machine, SGI Power Challenge:

(36,80,20) grids
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Figure 2.12 Speedup of LSOR on distributed memory machine, IBM SP2: (36,80,20)

grids

0

10

20

30

40

50

60

1 2 3 4

Nodes

S
ec

on
s

Overall cpu time

Matrix construction

Solver



37

Figure 2.13 Speedup of GMRES(3) on distributed memory machine, IBM SP2:

(36,80,20) grids
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Figure 2.14 Speedup of TFQMR on distributed memory machine, IBM SP2: (36,80,20)
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Table 2.4 Comparison of CPU time of different domain decomposition schemes on SGI

Power Challenge.

Methods of

solver

Nodes (decomposition) Local grid

size

CPU time

(sec)

Speedup

1 (48,48,4) 274.8 1.0

4  (1-D, x direction) (12,48,4) 100.4 2.7

8  (1-D, x direction) (6,48,4) 66.7 4.1

4  (2-D, x and y direction) (48,28,2) 100.8 2.7

LSOR

8  (3-D) (24,24,2) 68.3 4.0

4  (1-D, x direction) (12,48,4) 94.8 2.9

8  (1-D, x direction) (6,48,4) 57.5 4.8

4  (2-D, x and y direction) (48,28,2) 100.6 2.7

TFQMR

8  (3-D) (24,24,2) 76.0 3.6
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2.6 Conclusions

Using the finite difference IMPES scheme, a new parallel black-oil simulator was

implemented.  The following conclusions were obtained from the study, which focused

on the comparative performances of several parallel linear solvers.

1. The simple LSOR method for parallel computers was shown to be a viable tool for

parallelization of reservoir simulators.  The performance of this scheme is comparable

to the powerful TFQMR method.

2. The performance of the parallel linear solvers on the shared and the distributed

memory machines was comparable, which demonstrated the portability of MPI in

parallel implementation of oil reservoir simulation programs.

3. Single-dimension domain decomposition saves communication overhead and is thus

better than multidimensional divisions of the reservoir.



CHAPTER 3

DISCRETE FRACTURE MODEL FOR FRACTURED

OIL RESERVOIR SYSTEM

3.1 Introduction

Computer simulation of multiphase flow through fractured porous media

continues to be challenging.  Important applications are in the areas of contaminant

transport in porous media and in oil, gas and water flow in petroleum reservoirs.  It has

been recognized that most subsurface systems are fractured to a certain degree.  New

system characterization techniques, particularly in oil and gas reservoir engineering are

making it possible to map out fracture networks, at least to a limited extent.  Four distinct

approaches have been employed for the simulation of fluid flow in fractured porous

media; explicit discrete fractures, discrete-fracture networks, single continuum and dual

continua (Bear, 1993).  Historical development of the models both in the oil industry and

in the hydrogeological community has been discussed in detail by Pinder, et al, (1993).

Kazemi and Gilman (1993) provide a more comprehensive mathematical review of the

models developed for the multiphase simulation in oil, gas and coalbed reservoirs.

Pioneering efforts of Kazemi and Gilman, particularly in the development of dual-

porosity models, has made possible simulation of fractured systems at the reservoir scale.



42

Even though this technique has served the practical purpose of simulating real reservoirs,

it is recognized that this dual-continuum concept where orthogonal grid blocks are

typically used to capture the thin fracture networks (Figure 3.1) is unable to represent

fractures in a spatially accurate manner.  It may be possible to simulate these fractured

systems using single porosity models with fine grids around fractures.  However, that

would require an enormous number of grid blocks.  Another possible approach is

homogenization method using upscaling techniques to generate equivalent properties of

porous medium.  Unfortunately, it has generally become known that these conventional

technologies average or smear out the effects of fractures in simulation due to the

information lost in the upscaling process to reduce the fine grid blocks to a reasonable

number.  Discrete fracture models are an alternative to the single and dual porosity

models.  These are more common in groundwater and contaminant transport; however,

few attempts at multiphase flow modeling have been made because of the computational

effort required.

The model developed in this chapter is essentially to address incorporation of

fractures in a spatially explicit fashion in a given domain.  The model has been developed

to provide an infrastructure to utilize sophisticated fracture identification and mapping

methods.  The complex geometry of a complex fracture network has typically required a

finite element discretization of the spatial domain.  Finite-element reservoir simulation

models are not very common.  The model developed here is conceptually similar to the

model developed by Dalen (1979) for non-fractured reservoirs and hydrogeologic

multiphase flow models proposed by Kaluarachchi and Parker (1989).  The discrete-

fracture implementation is similar, in principle to the formulation described by Huyakorn
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Figure 3.1 Idealization of fractured reservoir in dual porosity model.

et al. (1983) who implemented the model for a single vertical fracture.  Huyakorn et al.

(1994) described a three-dimensional, multiphase flow model for flow in fractured media.

Slough, et al. (1999) referred to a discrete-fracture model when discussing the importance

of rock matrix entry pressure on dense nonaqueous phase liquid migration in fractured

geologic materials.  Details of the model and implementation were not provided.

Development and implementation of a discrete-fracture model to practical multiphase

flow problems has not been addressed previously and is the subject of this chapter.  

A two-dimensional problem is solved; fractures are represented as one-

dimensional line elements while homogeneous matrix space of the system is represented

by two-dimensional triangular elements.  The model requires the solution of fully

coupled two-phase flow of slightly compressible, immiscible fluids in the matrix and

fracture elements.  The topics addressed in the following sections include
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• the mathematical description of the two-dimensional and two-phase flow

discrete fracture model (oil and water phases)

•  the development of finite element numerical algorithm for solving the

governing flow equations

• results and discussions of a number of simulations performed to illustrate

specific aspects of the naturally fracture system.

3.2 Development of the discrete-fracture model

3.2.1 Governing equations

In the discrete-fracture approach, multiphase flow equations are written for the

porous matrix and for the fractures separately.  Consider the flow of oil and water, the

two immiscible phases either through matrix blocks or through fractures.  The governing

flow equations are derived by combining Darcy’s law with equation of continuity.

Oil phase equation: ( )( )
osc

o

o

w
ooo

q
B

S
t

ZPT
ρ

φγ ±






 −
∂
∂

=−∇⋅∇
)1(

                                 (3.1)

Water phase equation: ( )( )
wsc

w
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w
wwcow

q
B
S

t
ZSPPT
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φγ ±








∂
∂

=−∇−∇⋅∇ '           (3.2)

In equations 3.1 and 3.2, the difference between phase pressures is given by the capillary

pressure, which in general, is a nonlinear function of fluid saturation.

                          )(0 wwc SfPPP =−=                                                                      (3.3)
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                               1=+ wo SS                                                                                 (3.4)

The transmissibilities in equations 3.1 and 3.2 are given by the following expressions.
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In the above equations, the relative permeabilities are also highly nonlinear functions of

saturations.  The main governing equations (3.1 and 3.2) can be formulated in terms of

different sets of dependent variables (Aziz and Settari, 1979).  When oil pressure and

water saturation are chosen as dependent variables, equations 3.1-3.3 can be combined

into the following matrix equation.
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The coefficients on the right hand side of equation 3.7 (also known as the storage matrix)

can be expressed in terms of the primary variables as follows.

oB
do

1
1 φ−=                                                            (3.8a)



46

o

o
w P

B
Sdo

∂

∂
−=

)
1

(
)1(2 φ                                               (3.8b)
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In the discrete-fracture model, identical equations are written for multiphase transport

through fractures.

Oil phase equation for flow through fractures:

( )( )
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Water phase equation for flow through fractures:
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The fracture equations are implemented using a local coordinate system, the relation of

which to the global coordinate system is shown in Figure 3.2.  Sets of initial conditions

and boundary conditions complete the equation system.

Initial Conditions: ),()0,,( yxPyxP oo =  at t=0                                               (3.11a)

                                    ),()0,,( yxSyxS ww =  at t=0                                             (3.11b)
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No flow conditions (Neumann boundary conditions) are imposed at the boundary.

                   0,0 =
∂

∂
=

∂
∂

x
S

x
P wo  at x = 0 and x = x 0                                         (3.12a)

                  0,0 =
∂

∂
=

∂
∂

y
S

y
P wo  at y = 0 and y = y0                                         (3.12b)

3.2.2 Finite element discretization

As mentioned previously, finite element formulation was used because of the

complex system geometry.  The finite element discretization of the matrix and fracture flow

equations is expressed in terms of nodal oil pressures and water saturations.  Standard

Galerkin method was employed, wherein, the matrix was represented by linear triangular

elements and the fractures by line elements.  The shape functions representing the primary

dependent variables are described by the following equations.

cybxa ++=Φ                                                                                                   (3.13)

( ) ( ) ( )[ ]3122123113123322
1

Φ−+Φ−+Φ−= yxyxyxyxyxyx
Area

a       (3.14a)

( ) ( ) ( )[ ]3212131322
1

Φ−+Φ−+Φ−= yyyyyy
Area

b                              (3.14b)

( ) ( ) ( )[ ]3122311232
1

Φ−+Φ−+Φ−= xxxxxx
Area

c                                (3.14c)

The shape functions for the fracture line elements are similarly given by the following

expressions.
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 x* indicates that the calculations are in the local coordinate system (Figure 2.1).  The

primary dependent variables are calculated using the basis functions.
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Figure 3.2 Representation of a fracture using linear line elements in a local coordinate

system.
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The formulation was designed to accommodate spatially variable properties since

most realistic subsurface flow applications involve heterogeneous systems. The variable

coefficients of storage matrix are approximated by the following functional representations.
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yxtdwtyxdw
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                                                                  (3.17)

The non-constant transmissibility terms in the flow equations are usually subjected

to upstream mobility weighting (Dalen, 1979; Huyakorn, 1983; Kaluarachchi and Parker,

1989).  In the upstream weighting formulation, the generalized flux between a pair of nodes

is given by

                            jillljil ZPTq ,, )(
~

)( ∇−∇⋅∇= γ                                                     (3.18)

where the upstream weighted transmissibility is
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The discretized-integral forms of equations 3.1 and 3.2 are obtained by applying

Green’s theorem and the Galerkin formulation.



50

∑ ∫

∑ ∫∑ ∫∑ ∫

∑ ∫∑ ∫∑ ∫

Ω

ΩΩ

ΩΩ

ΩΦ

+Ω
∂

∂
Φ⋅Φ+Ω

∂
∂

Φ⋅Φ=Ω⋅Φ∇−

ΩΦ∇⋅Φ∇+Ω⋅Φ∇+ΩΦ∇⋅Φ∇−

N

osc

o

N
o

N
w

S

S
oo

N

oo

S

S
oo

N

oo

d
q

d
t

P
dod

t
S

dodnZT

dZTdnPTdPT

)(

])[(])[()~(

])~[()~(])~[(

21

ρ

γ

γ

   (3.20)

∑ ∫∑ ∫∑ ∫

∑∫∑ ∫∑ ∫

∑ ∫∑ ∫∑ ∫

ΩΩΩ

Ω

ΩΩ

ΩΦ+Ω
∂

∂
Φ⋅Φ+Ω

∂
∂

Φ⋅Φ=

Ω⋅Φ∇−ΩΦ∇⋅Φ∇+Ω⋅Φ∇−

ΩΦ∇⋅Φ∇+Ω⋅Φ∇+ΩΦ∇⋅Φ∇−

N

wsc

w
N

o
N

w

S

S
ww

N

ww

S

S
wcw

N

wcw

S

S
ow

N

ow

d
q

d
t

P
dwd

t
S

dw

dnZTdZTdnSPT

dSPTdnPTdPT

ρ

γγ

])[(])[(

)~(])~[()~(

])~[()~(])~[(

21

'

'

        (3.21)

The Neumann boundary conditions in equation 3.12, ∇Po⋅n = 0 and ∇Sw⋅n = 0, allowed

cancellation of the boundary flux terms.  The integral equations are written in matrix

form as follows:
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Numerical oscillations are possible when solving multiphase flow problems using

the pressure-saturation dependent variable set (Dalen, 1979).  To overcome this difficulty

and to preserve the computational simplicity of the conventional Galerkin method, a

lumping procedure was used (Dalen, 1979 and Kaluarachchi and Parker, 1989). In the

lumping scheme employed, the storage matrix is diagonalized as follows:

                
















++
++

++

)3,3()2,3()1,3(

)3,2()2,2()1,2(

)3,1()2,1()1,1(

11100
01110
00111

BoBoBo
BoBoBo

BoBoBo
    (3.24)



52

Elemental and global matrices were constructed using standard integration

procedures.  In this application, two separate sets were generated, one for the matrix

system and the other for the fracture network.  The following general closed form

integration formulae were applied.

for linear line element : Ω
Ω ++

=ΩΦΦ∫ Length
ml
ml
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)!1(
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)( 21                          (3.25a)

for linear triangular element : Ω
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When upstream weighting and functional representation as described previously are

applied, the variable coefficients can be taken out of the integral equations and shape

functions can be integrated apriori.  Using the coefficients of shape functions (equation

3.14), relevant equations for the problem at hand are given below.
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The two global matrices are superposed as shown in Figure 3.3 and the combined

problem solved.

3.3 Numerical results

3.3.1 Model problem

The applicability of using the above scheme was tested on a two-dimensional test

problem, which was created using the FracManTM software of Golder Associates, Inc.

Details of the geologic data input and the methodology of fracture network generation are

discussed in detail in Forster, et al. (1998).  Detailed initial fracture map generated using

field data is shown in Figure 3.4.  In creation of the discrete-fracture networks, fracture

Figure 3.3 Superposition of the global matrices of the matrix and the fracture

components of the discrete fracture domain.
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Figure 3.4 The original fracture map generated using field outcrop data.

properties such as mean orientation and dispersion of orientation, mean fracture density

and spacing, fracture-size statistics, and connectivity, collected from outcrop

measurements were used.  For the test problem, about 10 % of the fracture lines having

dominant length were chosen from the detailed initial fracture image.  The fracture

network for the flow simulations is shown in Figure 3.5.  There were a total of 193 nodes,

341 triangular elements and 139 fracture line elements in the rectangular domain of 18.3

m by 18.3 m. Mesh generation was accomplished using the Voronoi algorithm (Fortune,

1987).  The finite element grid is also shown in Figure 3.5.  A water flood was simulated

with an injection well in the north-east corner and a production well at the south-west

corner, diagonally opposite.  The relative permeability to oil and water were symmetrical.

Relative permeabilities and other relevant properties are tabulated in Table 3.1.  The total

fluid injection and production rates were identical and kept constant over the duration of

one simulation run.  Several different rates and permeability contrasts were simulated.
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Figure 3.5 Discrete fracture test domain; also shown the finite element

discretization.

Production

Injection
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Table 3.1 Input data for discrete fracture simulations.

Porosity, fraction 0.2
Initial pressure, atm 64.6
Initial oil saturation,  fraction 0.8
Stock tank oil density, g/cm3

Stock tank water density, g/cm3

Slope of oil formation factor versus pressure, atm-1

Slope of oil viscosity versus pressure, cp/atm-1

Water formation factor, RC volume/SC volume
Water viscosity, cp

0.85
1.0

-0.0003
0.0007
1.0
1.0

                       Relative permeability and capillary pressure data :
Sw Krw Kro      Pcow(atm)
0.0 0.00 1.0 0.61
0.1 0.00 1.0 0.61
0.2 0.00 1.0 0.61
0.3 0.0675 0.3675 0.54
0.4 0.12 0.27 0.48
0.5 0.1875 0.1875 0.41
0.6 0.27 0.12 0.34
0.7 0.3675 0.0675 0.27
0.8 1.0 0.0 0.20
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3.3.2 Validation of the model

The discrete-fracture model, so developed was validated using two methods.  In the

first, the finite element formulation was tested on a nonfractured domain of the size

described previously and results were compared to results from a finite difference model.

Identical water flood problem was simulated using the two models.  The finite difference

simulator used was developed by the Computer Modeling Group (CMG).  It was their

black-oil model, IMEX.  The output from a 20 by 20 grid blocks model was compared to the

results from the straightforward finite-element discretization (regular) of the domain.  The

finite element grid is shown in Figure 3.6.  These are single-continuum, single-porosity

models. The comparison of the recovery curves from the two models is shown in Figure 3.7.

As can be seen from the figure, the finite element model matches the well-established finite

difference model almost exactly.  This shows that the finite element development, the

solution method and the numerical algorithms employed are fundamentally sound.

Figure 3.6 Finite element grid used for comparison with a commercial finite

difference simulator.
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Figure 3.7 Comparison of the recovery curves for the finite element and a finite

difference models of the nonfractured system.
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Results from a much simpler discrete-fracture model were also compared to

results from a model that allowed explicit fracture representation.  The two model

domains with their respective finite element discretizations are shown in Figure 3.8.

There were 262 nodes and 500 triangular elements in the explicit fracture representation

while the discrete-fracture model divided the domain of 0.3 m by 0.3 m into 136 nodes

and 228 elements, as depicted in Figure 3.8.  The explicit fracture representation is

essentially a fine-grid discretization of a domain containing a fracture.  It is a single-

continuum, single-porosity model which was validated earlier using a finite difference

model.  The model parameters used in these simulations are summarized in Table 3.1.  A

permeability contrast of a 1000 was employed.  This meant that all the fine elements

representing the fracture had a permeability thousand times the permeability of the

elements representing the surrounding matrix.  Comparison of the oil recovery curves for

the two models are shown in Figure 3.9.  The two curves are reasonably close.

Comparison of the water saturation contours at 0.7 pore volumes (PV) injected is

presented in Figure 3.10.  The two saturation maps agree reasonably well.  However, the

water saturations downstream are slightly higher in the discrete-fracture model.  The

water velocities through the one-dimensional fracture representation in the discrete-

fracture model are higher compared to the explicit fracture representation.  Considering

the fundamental differences between the two models, the recovery curves and the

saturation maps in the two simulation methods (discrete-fracture and explicit-fracture) are

still reasonably close.  It should be noted that even to simulate one fracture,

approximately, twice the number of elements were required in the explicit-fracture

representation, compared to the discrete-fracture method.  For even a small number of
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                                           a)

                                                       b)

Figure 3.8 A simple, single fractured problem modeled using a) explicit fine grid

representation and b) discrete fracture approach.
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Figure 3.9 Oil recovery comparisons for the explicit fracture and the discrete
fracture models.
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                                                                    a)

                                                                  b)

Figure 3.10 Water saturation contours for a) the explicit fracture model and b) the

discrete fracture model at 0.7 PV water injected.  Absolute permeability was 1mD and the

permeability contrast was 1000.
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fractures, the explicit fracture method will become computationally impractical.  Thus, a

framework has been developed to simulate the presence of fractures in a spatially explicit

manner using the discrete-fracture approach.

3.3.3 Effect of fracture to matrix permeability contrasts

Water saturation profiles after a total of 0.7 pore volumes (PV) of water injected

for each of the three permeability contrasts are shown in Figures 3.11.  Permeability

contrasts (kfracture:kmatrix) explored in this analysis represent different ratio between

fracture and matrix permeability (10:1, 100:1 and 1000:1).  Other simulation parameters

are given in Table 3.1.  Since permeability contrast between the fractures and the matrix

is small in the 10:1 case, the saturation profiles are more or less symmetrical (Figure

3.11).   Figure 3.11 also shows that increasing permeability ratio to 100:1 and then to

1000:1 causes the fractures to have a greater impact on the water flood.  For a

permeability contrast of 1000:1, the flood path is uniquely fracture network dependent.

In addition, it is apparent that increasing the permeability contrasts causes a net reduction

in oil recovery for a given volume of injected water (Table 3.2).  The oil recovery

behavior is illustrated in Figure 3.12.  As the permeability contrast increases, the water

cut in the produced fluids increases more rapidly leading to more gradual oil recovery

and eventually to reduced total recovery (Table 3.2).  Thus, localization of flow in the

higher permeability fractures causes reduced sweep of oil from the intervening matrix

blocks.
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                                        a) permeability contrast – 1:10

                                 b) permeability contrast – 1:100

                                     c) permeability contrast – 1:1000

Figure 3.11 Effect of the matrix to fracture permeability contrast on water saturations

at 0.7 PV injected; Absolute matrix permeability was 1mD.
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Table 3.2 Oil recoveries (Percentage original oil in place, OOIP recovered after injecting

1.4 pore volumes of water) at different matrix to fracture permeability ratios.  Absolute

permeability was 1 mD in all simulations.

Model Permeability

contrast

Rate

(m3/day)

Recovery

% OOIP

Discrete fracture 10 to 1 0.014 65

Discrete fracture 100 to 1 0.014 61

Discrete fracture 1000 to 1 0.014 54
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Figure 3.12 Oil recoveries at different matrix to fracture permeability contrast.

Absolute matrix permeability was 1mD.
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3.3.4 Effect of absolute matrix permeability

It should be noted that the absolute permeability of the matrix in all of the

previous simulations was 1mD.  The effect of the absolute matrix permeability on oil

recovery was examined at the highest permeability contrast (1:1000).  The recovery curve

comparison is shown in Figure 3.13.  As the absolute matrix permeability increases, as

expected, the total recovery increases.  Oil is also recovered at a faster rate.  The water

saturation contours for the two absolute permeabilities are compared in Figure 3.14.

Fracture network plays a less significant role in determining oil recovery and fluid

distributions.  There is less oil bypassing and more even water saturation distribution at

higher absolute matrix permeability.

3.3.5 Effect of injection rate

Oil recovery from fractured systems is a complex interplay of permeability

contrast, absolute permeabilities and flow rates.  Series of simulations were performed at

various injection rates and at the high permeability contrast to assess the effect of flow

rate on oil recovery and fluid distributions.  The recovery curves for four different flow

rates are compared in Figure 3.15.  The absolute permeability in these simulations was 1

mD.  The oil recoveries at 1.4 PV injected for the four flow rates are compared in Table

3.3.  In general, as the flow rate increases, oil recovery decreases.  The water saturation

distributions for three of the flow rates are compared in Figure 3.16.  It is clear from this

figure that higher injection rate leads to greater oil bypassing and thus lower recovery.

Similar trends were observed for simulations performed at 100 mD absolute matrix

permeability.
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Figure 3.13 Oil recoveries at two different absolute permeabilities.

Permeability contrast was 1:1000.
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                                                                  a)

                                           b)

Figure 3.14 Water saturation contours at 0.7 PV water injected for two different

absolute matrix permeabilities a) 1 mD and b) 100 mD.  The matrix to fracture

permeability contrast was 1:1000 and flow rate was 0.32 m3/day.
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Figure 3.15 Effect of water injection rate on oil recoveries; absolute matrix

permeability was 1 mD and the matrix to fracture permeability contrast was

1:1000.
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Table 3.3 Oil recoveries (Percentage original oil in place, OOIP recovered after injecting 1.4 pore volumes
of water) at different absolute permeabilities and injection rates; permeability contrast was 1000 to 1 in all
the simulations.

Model Absolute

permeability

Rate

(m3/day)

Recovery

% OOIP

Discrete fracture 1 mD 0.014 54

Discrete fracture 1 mD 0.058 52

Discrete fracture 1 mD 0.144 50

Discrete fracture 1 mD 0.320 50

Discrete fracture 100 mD 0.144 56

Discrete fracture 100 mD 0.180 55

Discrete fracture 100 mD 0.208 54

Discrete fracture 100 mD 0.320 52
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                                                           a)

                                                               b)

Figure 3.16 Water saturation contours at 0.7 PV water injected at injection

rates of a) 0.014 m3/day and b) 0.32 m3/day. The absolute matrix permeability

was 1mD and matrix to fracture permeability contrast was 1:1000.
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Mattax and Kyte (1962) identified “critical injection rate” at which the water

advance through the fracture is too rapid for efficient transfer of oil from the matrix to the

fracture.  In this work, even though the oil recovery reduced with higher injection rate, it

was not possible to identify a single rate at which there was a fundamental change in the

oil recovery mechanism.  It is considered that results of the Mattax and Kyte (1962)

experimental and analytical work apply to idealized matrix/fracture systems of either one

vertical or horizontal fracture system.  When a complex fracture network is being

simulated, the recoveries are also strongly dependent on the nature of that network.  The

mechanistic differences between displacements at low and high rates are captured in

Figure 3.16.

3.3.6 Effect of capillary pressure

Most of the previous studies on imbibition in fractured reservoirs assume zero

capillary pressure in the fractures (Terez and Firoozabadi, 1999).  The discrete-fracture

model developed here allows representation of different sets of capillary pressures for the

matrix and for the fractures.  In addition it also allows input of different sets of capillary

pressures in different portions of the domain.  All of the previous simulations were

performed with identical capillary pressure-saturation relationships in the matrix and in

the fractures (Table 3.1).  The effect of capillary pressure on oil recovery was examined

by reducing the capillary pressure at the fracture nodes to 10% of the base values shown

in Table 3.1. Capillary pressure in the fracture appeared to have a significant influence on

recovery at all injection rates only at high matrix permeability.  Oil recoveries at the two

sets of capillary pressures are plotted in Figure 3.17.  The matrix permeability in these
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Figure 3.17  Effect of fracture capillary pressure on oil recoveries at two different

injection rates.  Absolute permeability was 100 mD and the fracture to matrix

permeability contrast was 1:1000.
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simulation was 100 mD.  At the lower fracture capillary pressure, water appears to

imbibe more efficiently into the matrix driving oil into the fracture network.  This is true

for both the low and the high flow rates.  The saturation maps at the two capillary

pressure sets clearly illustrate this point (Figure 3.18).  When the matrix permeability is

reduced to 1 mD, and at high flow rate, there is little change in oil recovery when the

fracture capillary pressure is reduced. However, when the flow rate is lower, more oil is

recovered at lower fracture capillary pressure (Figure 3.19).  These sets of simulations

indicate that oil recovery in fractured reservoirs depends on a complex interplay of

capillary and viscous effects, which in turn are controlled by fracture and matrix

permeabilities, fracture and matrix capillary pressures and fluid injection-production

rates.  The model developed here is a tool that helps identify these intricate effects by

performing systematic studies.

3.3.7 Comparison of the discrete fracture model with

different homogenization approaches

Homogenization method developed by Koebbe (1998) was used to determine

effective permeability values for the fractured domain shown in Figure 3.5; different

permeability contrasts provided different effective values.  Based on a rectangular grid

system, effective properties are derived by finding an approximate numerical solution to

the following system of elliptic partial differential equations governing flow through

porous media.

                                 - ∇⋅v∈ = f                                                              (3.27)
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                                                                            a)

                b)

Figure 3.18 Water saturation contours at 0.7 PV injected for two different sets

of fracture capillary pressures; a) base capillary pressure (Table 3.1) and b) 10

% of the base capillary pressure. Absolute permeability was 100 mD and

matrix to fracture permeability contrast was 1000.
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Figure 3.19 Oil recoveries at two sets of fracture capillary pressures; absolute

permeability was 1 mD and the flow rate was 0.014 m3/day.  The matrix to

fracture permeability contrast was 1000.
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where v∈ = - K∈∇h∈. In equation 3.27, K∈ is the heterogeneous permeability and h∈ is the

heterogeneous pressure (or head); superscript ∈ indicates micro-scale properties in

microscopic scale.  The Koebbe’s upscaling or average processes apply the periodic

perturbation method to find equivalent permeability in macro-scale domain, which

converts the elliptic flow equation 3.27 into the form

                                 - ∇⋅v# = f                                                              (3.28)

where v# = - K#∇h#.  In the equation, K# is the homogenized permeability in macroscopic

scale and h# is the pressure variable (or head) in macroscopic domain; superscript #

indicates macro-scale properties.  The technique was extended from the work by

Bourgeat (1984) and Amaziane and Bourgeat (1988), which also applied a perturbation

method to solve the equations governing flow through porous media.

For the two-dimensional fractured domain shown Figure 3.5, the fracture map

was initially discretized to produce 200 × 200 grid blocks.  Homogenization was

performed to produce coarse grids (10 × 10, 20 × 20 and 40 × 40 grids) with equivalent

permeabilites.  The result of permeability upscaling using the homogenization method for

the test fracture map (Figure 3.5) is illustrated in Figure 3.20, where the absolute matrix

permeability was assumed to be 1 mD while the fracture permeability was 100 mD.  The

homogenization method usually produces a full nine component permeability tensor.

Since typical black-oil reservoir simulators are not capable of accepting full tensor

representations, off-diagonal terms were suppressed in the current implementation.  With

the equivalent permeability generated by the homogenization method, water flood

simulations were performed using the finite difference simulator developed by the
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Fig 3.20 The equivalent permeability magnitude of upscaling the fracture network from

200×200 grid blocks to 20×20 grid blocks for a permeability contrast 100.  The absolute

matrix permeability was 1 mD and the fracture permeability was ten times the matrix

permeability.
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Computer Modeling Group (CMG).  For the 10 × 10 resolution, water saturation profiles

for permeability contrasts of 10 and 100 are shown in Figure 3.21 and 3.22.  The flow

rate in these simulations was 0.014 m3/day.  As expected, the profiles are more or less

symmetric for the low contrast.  The water saturation profiles at 0.32 m3/day for the high

permeability contrast (1000 to 1) are shown in Figure 3.23.  Recoveries at 1.4 PV total

injection are presented in Table 3.4 for various homogenization methods at different

resolutions.  Recoveries even for the 40 × 40 resolution are greater than those predicted in

the discrete fracture model.  Water saturation profiles for the 40 × 40 resolution at 0.7 PV

injection are shown in Figure 3.24.  At this fine resolution, the homogenization begins to

capture the features of the network better; however, the results are still vastly different

from the discrete fracture model.

Arithmetic, geometric and harmonic average methods of homogenization were

also performed (Koebbe, 1998) to generate the equivalent permeability and profiles were

generated at identical flood conditions.  For the high permeability contrast, the water

saturation profiles for the arithmetic, geometric and harmonic methods of generating

equivalent properties are shown in Figure 3.25, 3.26 and 3.27.  All the floods in these

simulations were performed at the high injection rate of 0.32 m3/day.  Comparison of the

profiles shows that in terms of being able to capture the features of the fracture network,

Koebbe’s homogenization (1998) is the best.

3.4 Conclusions

A new discrete-fracture model that incorporates fractures spatially explicitly was

developed and tested on a two-dimensional data set.  A diagonally oriented water flood was
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Figure 3.21 Water saturation profiles for the homogenized model: permeability

contrast of 10, flow rate of 0.014 m3 per day, and resolution 10 by 10.
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Figure 3.22 Water saturation profiles for the homogenized model : permeability

contrast of 1000, flow rate of 0.014 m3 per day, and resolution 10 by 10.
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Figure 3.23 Water saturation profiles for the homogenized model: permeability

contrast of 1000, flow rate of 0.32 m3 per day, and resolution 10 by 10.
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Table 3.4 Percentage oil in place (OOIP) recovered after injecting 1.4 pore volumes of

water  (Equivalent Property Model).

Model Perm.

Contrast

Resolution Rate

(m3/day)

Recovery

% OOIP

Homogenization 10 to 1 10 × 10 0.014 64

Homogenization 100 to 1 10 × 10 0.014 64

Homogenization 1000 to 1 10 × 10 0.014 59

Homogenization 1000 to 1 10 × 10 0.32 63

Homogenization 1000 to 1 20 × 20 0.32 58

Homogenization 1000 to 1 40 × 40 0.32 56

Arithmetic upscaling 1000 to 1 10 × 10 0.32 59

Geometric upscaling 1000 to 1 10 × 10 0.32 59

Harmonic upscaling 1000 to 1 10 × 10 0.32 59
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Figure 3.24 Water saturation profiles for the homogenized model : permeability

contrast of 1000, flow rate of 0.32 m3 per day, and resolution 40 by 40.
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Figure 3.25 Water saturation profiles for the model where the equivalent

properties were generated using the arithmetic average: permeability contrast of

1000, flow rate of 0.32 m3 per day, and resolution 10 by 10.
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Figure 3.26 Water saturation profiles for the model where the equivalent

properties were generated using the geometric average: permeability contrast of

1000, flow rate of 0.32 m3 per day, and resolution 10 by 10.
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Figure 3.27 Water saturation profiles for the model where the equivalent

properties were generated using the harmonic average: permeability contrast of

1000, flow rate of 0.32 m3 per day, and resolution 10 by 10.
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simulated. The nonfractured, finite element model was validated using a finite difference,

commercial black-oil simulator.  For a single-fracture system, the discrete-fracture model

produced results comparable to the model with an explicit finite element discretization of

the domain.

The discrete-fracture model was flexible, in that it was possible to use different sets

of properties to represent the matrix and the fracture systems, and different portions of the

domain.  Several sets of simulations were performed to assess the impact of a number of

input parameters.  As expected, matrix to fracture permeability contrast played a dominant

role in determining oil recovery.  At high contrast (1:1000), there was considerable oil

bypassing and reduced oil recovery.  At higher injection rates, the bypassing was even more

pronounced.  As the matrix absolute permeability increased, the fracture network played a

less dominant role.  Reducing the capillary pressure in the fractures generally increased oil

recovery and had more significant effect when the matrix permeability was higher.  There

was the significant difference of water saturation profiles between homogenization methods

and discrete fracture model.  Any homogenization method could not capture the oil

bypassing observed in the discrete fracture model.  As the permeability contrast is reduced,

the match between the homogenization and the discrete fracture model improves.  But

higher oil recovery values were obtained in the simulations of all homogenization models.

The discrete-fracture model developed in this paper is an alternative to conventional

dual-porosity (dual-permeability) or single-porosity models and can be used when detailed

fracture network information is available.  It allows a much finer examination of the

multiphase displacement processes in fractured porous media than has been possible
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through conventional models where fractures are represented by uniform orthogonal

networks or averaged out into single statistical property (permeability).



CHAPTER 4

INEXACT NEWTON-KRYLOV METHODS FOR THE SOLUTION OF

IMPLICIT RESERVOIR SIMULATION PROBLEMS

4.1 Introduction

Implicit Pressure Explicit Saturation (IMPES) solution scheme has been a popular

numerical procedure for black oil simulations in a computational point of view and is

applicable under most simulation conditions.  However, IMPES does have stability

limitations, particularly with regard to certain capillary pressure functions and grid block

geometries (aspect ratio).  As a consequence, for certain types of capillary pressure-

saturation functionalities and aspect ratios, extremely small time steps would be required

for a stable solution in IMPES (Aziz and Settari, 1979).  Thus an implicit formulation is

necessary to address the problem of stability in solving the set of partial differential

equations.  When a fully implicit scheme converts the partial differential equations of

black oil reservoir simulation to algebraic equations, usually a set of nonlinear algebraic

equations result.

                                                     0)( =xF                                                     (4.1)
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The number of equations is N (grid blocks) × the number of phases and the set is to be

solved at every time step of the simulation.  The method of choice for the solution of

these nonlinear equations is the Newton's method that is used in most conventional

implicit formulations.  Briefly, for a given initial guess x0, the Newton’s method

computes a sequence of solution increments sk and iterates xk as follows:

kkk

kkk

sxxSet

xFsxFSolve

econvergencUntil

+=

−=

+1

' )()(                                                      (4.2)

Although Newton's method is attractive because it converges rapidly from any

sufficiently good initial guess, one drawback of the method is to solve the equations at

every Newton’s iteration.  Computing the exact solution of the linear matrix system of

equation 4.2 at each stage of the Newton iteration can be very expensive if the number of

unknowns is large and the initial guess is far from the solution.  Therefore, application of

the inexact Newton’s method was examined.  The nonlinear equations for this application

were generated by a fully implicit finite element discrete fracture model.  The differential

equations, the finite element formulation and the set of nonlinear equations are discussed

in detail in Chapter 3.  Note that the main idea of inexact Newton’s scheme is the

inexactness of the solution increments obtained by solving the linear system in the

Newton’s formulation (4.2).  In the implementation of the inexact Newton method, the

transpose free quasi-minimal residual method (TFMQR) was used to find approximations
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to the Newton’s iterates.  TFQMR, when implemented with a certain inexact tolerance,

reduces the computational cost of the overall inexact scheme compared to the exact

Newton’s method.  TFQMR was used since it turned out to be the most efficient of the

linear solver as shown in Chapter 2.

4.2 The application of inexact Newton method to

a fully implicit oil reservoir simulation

To understand the inexact Newton’s algorithm, it is important to define the so-

called enforcing terms.  The linear system from Newton’s equation 4.2 is solved only

approximately in the inexact formulation.  The general inexact formulation is shown

below:

                                      )()()( '
kkkkk xFsxFxF η≤+                                         (4.3)

This equation essentially indicates an inexact step to obtain only an approximate solution

of the linear equation to specified accuracy ηk.  Thus, the inexact step saves the most

costly part of computing the exact solution in Newton’s method and also offers great

opportunity for exploiting parallelism when used with efficient iterative linear solution

methods.  In the study of the inexact Newton’s framework to oil reservoir simulation, the

following particular enforcing terms were examined (Eisenstat and Walker, 1996).

1. ηk = 10 –4, the choice which requires uniformly close approximations of Newton

steps for all iterations and results in fast local convergence rate per Newton

iteration, which can considered close to a exact Newton’s formulation.
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2. ηk = 
1

2
1 +









k

, the choice solving relatively inaccurate approximations of Newton

steps with small k and with no information about ||F(xk)||.

3. ηk = min{
)2(

1
+k

, |||F(xk)||}, the choice also allowing relatively inaccurate

approximations of Newton method with small k and with some information about

||F(xk)||.  Its also depends on the scale of ||F(xk)||.

4. ηk = 
)(

)()()(

1

11
'

1

−

−−− +−

k

kkkk

xF

sxFxFxF
, the choice reflecting the agreement

between ||F(xk)|| and its local linear model at the previous step.  In this choice, the

initial enforcing term was set at 0.5, which can help to avoid oversolving the

Newton equations when a significant disagreement between  ||F(xk)|| and its local

linear model results.

For practical effectiveness, a backtracking algorithm (Press et al., 1992) is used,

which offers global convergence.  If ||F(xk+sk)|| is not acceptable, the algorithm will

backtrack to try an acceptable ||F(xk+θsk)||, as shown in Figure 4.1.

Fig 4.1 Quadratic backtracking scheme used in the inexact Newton algorithm

| |F(x)||

0=θ 1=θ
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In the strategy for backtracking, a new functional value is defined, f(θ)=||F(xk+θsk)||, the

one-dimensional restriction of ||F(xk)|| to the line through xk in the direction sk.  If it needs

to backtrack, a quadratic line search model will be used to minimize the current

information of f(θ).  Initially, two pieces of information are known about f(θ),

                                                  )()0( kxFf =                                                       (4.4)

                                               kkk sxFxFf ⋅= )()()0( ''
                                           (4.5)

After calculating ||F(xk+sk)||, another functional value is known,

                                                           )()1( kk sxFf +=                                                            (4.6)

If f(1) ≥ f(0), it models f(θ) by a one dimensional quadratic model satisfying the above

conditions,

                             )0()0()]0()0()1([)( '2' ffffff ++−−≅ θθθ                         (4.7)

θ is calculated by:

                                              
)]0()0()1([2

)0(
'

'

fff
f

−−
−=θ                                       (4.8)
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The θ  thus calculated is the new value employed in the inexact method.  In the

implementation of the algorithm, t = 10-4 was used to ensure sufficient reduction in the

backtracking step.  The final algorithm used here is shown in Figure 4.2, which was

developed by Eisenstat and Walker (1996).  Based on the algorithm, the inexact Newton

algorithm was applied to a two-phase (oil and water phases) oil reservoir simulation in a

finite element formulation using linear triangular elements.  The two flow equations (for

oil and water phases) described in the previous chapter were expanded in the two primary

variables (oil pressure and water saturation).  The iterations in the implementation are:

1. Estimate the primary variables, Po (oil pressure) and Sw (water saturation), which

might be based on the values at the previous time step

2. Calculate the residual vector and the Jacobian matrix based on current

approximations. As was shown in the previous chapter, the residual vector and

Jacobian matrix were calculated in matrix form

   To solve F(x) = 0.

1. Set xo to solve ||F(xk)|| for k = 1,2…

2. Chose initial ηk and sk such that )()()( '
kkkkk xFsxFxF η≤+

   While ||F(xk+sk)|| > (1- t + t ηk )||F(xk)||

   Chose θ in (0.1,0.5)

   Update sk ← θsk and ηk ← 1 - θ (1 - ηk)

3. Set xk+1=xk+sk

4. Check tolerance

         Figure 4.2 The inexact Newton method with backtracking scheme.



97

GoQ
t

P
Bo

t
S

BoAoPresidual o
ow

o −−
∂

∂
+

∂
∂

+= 21)1(                         (4.9)

GwQ
t

P
Bw

t
S

BwAwPSAwresidual w
ow

owpc −−
∂

∂
+

∂
∂

++= 21)2(               (4.10)



















∂
∂

∂
∂

∂
∂

∂
∂

=

ow

ow

P
residual

S
residual

P
residual

S
residual

Jacobian )2()2(

)1()1(

                                      (4.11)

All the coefficient s were identified in the previous chapter.

3. Solve the linear systems of equation to make corrections to the current

approximations by using the appropriate enforcing term in the inexact Newton

algorithm.
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4. Updating the primary variables with the new information from Newton’s

iteration.
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4.4 Numerical results

A two-phase flow problem of two-dimensional finite element formulation

described in the previous chapter was solved by the four different inexact Newton’s

schemes.  A 18.3 m by 18.3 m two-dimensional rectangular reservoir model was used for

the numerical experiment.  There were a total 441 nodes and 800 triangular elements.

The computational times for the five time steps were compared for all the methods.  The

effect of the choice of enforcing terms on computational time is shown in Table 4.1.  As

can be seen from the table, even though choice 4 takes more Newton iterations,

computational time is significantly less.  The convergence behavior for the first and the

fourth choices is shown in Figure 4.3, in which the logarithm of ||F(x)|| is plotted as

Newton iterations progress.  The two methods (choice 1 and 4) show smooth

convergence behavior without convergence failure.  Enforcing term choice 4 takes more

iterations because it used larger η in most iterations. The parallel performance of the

program was examined in the next chapter on two parallel machines (SGI Power

Challenge and SGI Origin 2000) using choice 4 for the enforcing term.

Table 4.1 Computational times for the four choices of enforcing terms examined

in this study

Enforcing

terms

cpu time

(sec)

Newton

iterations

Linear solver

iterations

Tolerance

1 1174 15 228 1.085E-05

2 955 15 180 1.098E-05

3 1744 15 367 1.109E-05

4 521 19 77 7.984E-06
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Fig 4.3 Convergence behavior for two of the inexact Newton formulations
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Significant acceleration is achieved through domain decomposition method.  The parallel

implementation of the scheme is provided in the next chapter.

4.4 Conclusions

All the inexact Newton choices studied were practically convergent with highly

desirable superlinear rates of convergence.  The essential difference in the four methods

studied was the enforcing term that decided the level of inexactness of the method.  The

method designed to reflect the agreement between the function and its local linear model

at the previous time step was found to be significantly better than methods that arbitrarily

fixed the level of inexactness (about 50 % saving in CPU time compared with uniformly

close approximations of Newton method).  The conclusions of this study would be

applicable to any set of nonlinear equations resulting from implicit reservoir simulation.



CHAPTER 5

PARALLEL IMPLEMENTATION OF THE FINITE-ELEMENT,

DISCRETE FRACTURE MODEL

5.1 Introduction

Standard commercial oil reservoir simulators are based on finite difference

approximations in time and space and can be designed to achieve high performance on

today’s parallel computers (Killough, 1993).  The explicit fracture representation in

simulating fractured reservoirs would require an exceptionally fine grid and would make

practical implementation with even a few fractures nearly impossible.  In Chapter 3, a

discrete fracture model was developed as an alternative to conventional dual continua

models and to fine-grid, explicit fracture model.  The finite element solution to the

problem is also computationally challenging and parallel implementation would be

mandatory for the solution of realistic problem sets.  The primary objective of this

chapter is to examine the performance of the discrete fracture model on parallel machines

using the domain decomposition technique.  Domain decomposition is the most

commonly used technique for parallelizing reservoir simulators.  In oil reservoir

simulation, most of the reported work has been with respect to finite difference

simulators. Even though the development of parallel black oil (Hemaanth-Kumar and
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Young, 1991) and compositional simulators (Killough, 1995, Killough and Rao, 1991,

Rutledge et al., 1991 and Rame and Delshad, 1995) have been reported in the literature,

the parallel computing application to finite element models has not been reported

especially for fractured oil reservoir system.  In finite element formulations, the grid is

usually unstructured and as a result the computational kernel consisting the parallel

implementation scheme for the solution of linear and nonlinear equations is different

from the one in finite difference discretization.  In order to solve the linear and nonlinear

equations, parallel iterative solvers discussed in Chapter 2 and 4 are employed.  More

details of the finite element equations for two-phase and two-dimensional discrete

fracture model were presented in Chapter 3.  The following sections describe the parallel

implementation strategy using domain decomposition method.  Parallel performance

analyses were undertaken for four problem stets on SGI Power Challenge (shared

memory machine) and SGI Origin 2000 (distributed shared memory machine).  Results

of these analyses are presented at the end of the chapter.

5.2 Parallel implementation

When the multiphase, discrete fracture flow equations 3.1 ~ 3.4 are solved

implicitly, the solution was ultimately obtained by the sets of nonlinear ordinary

differential equations 4.9 and 4.10.   Every step in the solution of the equations involves

the solution of a linear matrix system 4.11, which is a Newton-like iteration scheme.  In

this method, the correction vector of primary variables Po  (oil pressure) and Sw (water

saturation) minimizes the norm of residual equations 4.9 and 4.10.   In the parallel
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implementation of the solution procedures mentioned above, the most expensive part is

the solution of the large sparse linear system of equation 4.11.

The linear matrix system of equation 4.11 was solved in parallel by first

decomposing the problem domain geometrically.  Here, the finite elements and nodes are

distributed over multiple processors.  Obviously, the element-by-element computation of

equations 3.7, 3.8 and 3.9 (an assembled global matrix system) is a generic parallel-

processing problem.  That is because finite element method consists of breaking up the

computational domain into the elements, in which the governing equations are discretized

using low-order polynomial shape functions.  Indeed, elemental contribution to a

assembled global matrix system can be calculated independently on individual processors

(Figure 5.1).

            Figure 5.1 Domain decomposition strategy in finite element computations.
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In the figure, the globally assembled linear matrix system requires appropriate

interprocessor communications for the boundary regions among processors.  To reduce

the load level of interprocessor communications, shared finite elements are allocated to

the boundary of each processor.  In this scheme, each processor works only on its

subdomain to construct a global linear matrix system, which is distributed on multiple

processors.  It requires no communications in the stage of construction for a global linear

matrix system.  Once the linear system is solved, the new information of updated primary

variables is exchanged between processors.  This concept is illustrated for an 18 node, 20

triangular element system in Figure 5.2.  In this figure the domain is divided among two

processors.

Figure 5.2 The structure of linear matrix system of equations in matrix form divided

among two processors; the system comprises of 18 nodes and 20 triangular elements,

as shown.

P r o c e s s o r  I

P r o c e s s o r  I I
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: C o u p l e d  e l e m e n t s
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Each processor shares four elements (three shared nodes). The figure shows that the

coupled matrix elements were constructed by the contributions of triangular elements

shared between the processors, which requires the communication of the three-coupled

vector elements. The communication for the three-coupled vector elements is required

only after the linear matrix system is solved in the iterations of Newton-like method

(equation 4.2 or 4.11).  In constructing linear matrix system, each processor has already

the information about the shared elements. Thus, no interprocessor communication is

required between the processors in the construction stage of the linear matrix system.

From the domain decomposition, each processor solves the nine-by-nine linear matrix

system from 14 triangular elements and 9 nodes; each vector element has two primary

variables (oil pressure, Po and water saturation, Sw), which makes one matrix element

contain four-by-four sub-system.  The domain decomposition for the parallel

implementation used here is similar, in principle to the scheme described by Keunings

(1995).

The Fortran program for the implementation of this idea is written in the

following sequence.

• At the beginning of calculations, each processor is allocated elements of a

subdomain where a dummy index is given for the shared elements at the

interface boundary of each processor.

• All processors then perform in parallel the sequential finite element matrix

construction for its own domain.

• When linear and nonlinear solution equations are solved, matrix and vector

calculations are achieved through the parallel communication at the interface
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boundary of shared elements among the processors, which makes each

processor hold updated interface variables.

• Once the updated interface variables are available, the processors can compute

the next iteration concurrently for its own subdomain.

 The parallel communication for the interface boundary among the processors consists of

two steps: moving the data of the indexed shared elements into temporary arrays (buffers)

and sending and receiving the data among the processors using the message passing

library.  The manner in which the information of interface elements is communicated is a

key issue as far as parallel efficiency is concerned.  In the study the non-blocking

message passing operations of MPI library (Gropp et al, 1995) are used as follows.

      SUBROUTINE SEND_MINUSB
     &          (M, M_LOCAL , M_GLOBAL , M_COMM  , N_SEND  ,
     &              ME      , ME_MINUS , TEMP)

      INCLUDE 'mpif.h'

      INTEGER  STATUS(MPI_STATUS_SIZE,1), info, req(1)

      DOUBLE PRECISION TEMP(M_LOCAL)

      INTEGER I, J, M, ME, ME_MINUS

      INTEGER M_LOCAL, M_GLOBAL(M), M_COMM(M,4)

      INTEGER N_SEND

      DOUBLE PRECISION  TEMP_SEND_MINUS(N_SEND)

      J=0
      DO I=1,M_LOCAL
         IF (M_COMM(I,1) .NE. 0) THEN
             J= J +1
             TEMP_SEND_MINUS(J)= TEMP(I)
         ENDIF
      ENDDO

      call MPI_ISEND(TEMP_SEND_MINUS, N_SEND, MPI_DOUBLE_PRECISION,
     &              ME_MINUS, 0    , MPI_COMM_WORLD,
     &              req(1), info)

      call MPI_WAITALL(1,req,status,info)
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      RETURN
      END

      SUBROUTINE RECEIVE_PLUSB
     &          (M, M_LOCAL , M_GLOBAL , M_COMM , N_RECEIVE ,
     &              ME      , ME_PLUS  , TEMP)

      INCLUDE 'mpif.h'

      INTEGER  STATUS(MPI_STATUS_SIZE,1), info, req(1)

      DOUBLE PRECISION TEMP(M_LOCAL)

      INTEGER I, J, M, ME, ME_PLUS

      INTEGER M_LOCAL, M_GLOBAL(M), M_COMM(M,4)

      INTEGER N_RECEIVE

      DOUBLE PRECISION  TEMP_RECEIVE_PLUS(N_RECEIVE)

      call MPI_IRECV(TEMP_RECEIVE_PLUS   , N_RECEIVE,
     &              MPI_DOUBLE_PRECISION , ME_PLUS  ,
     &              0                    , MPI_COMM_WORLD,
     &              req(1)  , info)

      call MPI_WAITALL(1,req,status,info)

      J=0
      DO I=1,M_LOCAL
         IF (M_COMM(I,4) .NE. 0) THEN
             J= J +1
             TEMP(I)= TEMP_RECEIVE_PLUS(J)
         ENDIF
      ENDDO

      RETURN
      END

Here, M_LOCAL,M_GLOBAL and M_COMM are the dummy indices to distinguish the

information of the coupled vector elements that require interprocessor communications

between ME and ME_PLUS(or ME_MINUS). The array, TEMP(M_LOCAL), stores the

information to be exchanged between processors.  The basic features of MPI library are

provided in Appendix.
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5.3 Numerical results

5.3.1 Model problems

Numerical simulations were performed on four problem sets.  Physical

dimensions of the problem sets were 60 feet by 60 feet.  In the first set, which considered

a fractured system, there were a total of 193 nodes, 341 triangular elements with 139

fracture elements.  The fracture map was created using the FracManTM software of

Golder Associates, Inc.  Details of the geologic data input and the methodology of

fracture network generation are discussed in detail in Forster, et al. (1998).  Detailed

initial fracture map generated using field data is shown in Chapter 3 (Figure 3.4).  Other

test problems were three non-fractured systems:

• Problem set 2): 441 nodes and 800 triangular elements

• Problem set 3): 676 nodes and 1250 triangular elements

• And problem set 4): 784 nodes and 1450 triangular elements

There was an injection well at the northeast corner and a production well at the southwest

corner, diagonally opposing the injection well.  Injection and production rates were

identical at 0.014 m3/day and computational times for a total of 10 days of simulations

were compared.  Fracture to matrix permeability contrast used for the problem set 1) was

100 and the absolute matrix permeabilities for all the test problems were 200 mD.  Other

parameters are given in Table 3.1.  Different from finite difference grid system, parallel

finite element scheme causes the unbalanced communication overhead from the irregular

domain distributed on multiple processors. By hand calculation, the study attempted to

form clusters of finite elements that minimize the surface boundaries contacted between

subdomains.  The domain decompositions are shown in Figures 5.3 and 5.4 for the
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Figure 5.3 The discrete fracture domain decomposed among three processors (193

nodes system of 341 triangular elements and 139 fracture lines).

Figure 5.4 A 441 nodes, 800 elements system decomposed among four processors.
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Processor II

Processor IV

Processor III
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problem set 1) and 2).  Table 5.1 shows the number of nodes and elements distributed on

four processors for the problem set 4.

5.3.2 Performance of the parallel program

The performance of the parallel program was evaluated on SGI power challenge

(a four-processor shared memory machine).  The processors employ the MIPS R8000

chip, with 64-bit registers and a cycle time of 75 M Hz.  Table 5.2 shows parallel speedup

and computational time of each subroutine obtained for the problem set 1).  The linear

solver consumed significant CPU time ranging from 33 % to 60 % of total CPU time,

which indicate that the speedup observed resulted from the use of efficient linear and

nonlinear solvers based on domain decomposition scheme.  The overall computational

time for the solution of linear matrix system remains about the same, which is resulted

from the more iterations required for local linear solver; some information is lost by the

coupled matrix elements.  The change in computational time is significant for setting up

the coefficient matrices and vectors.  Overall speed up factor of 1.8 with 4 processors was

obtained.  Here, speedup is defined as the ratio between the total computational time for

single processor and that observed with P number of processors.

Performance of the parallel program was also studied on SGI Origin 2000.  The

Origin 2000 is a scalable distributed shared memory architecture that provides a follow

on to the SGI Power Challenge class of symmetric multiprocessing systems.  Test

problems identified previously were executed on the Origin.  For the model problem with

193 nodes, the results were comparable to those for SGI Power challenge and are
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Table 5.1 Distribution of nodes and element for the problem set consisting of a total of

784 node and 1450 triangular elements.  This domain decomposition scheme was

employed with 8 processors on SGI Origin 2000.

The number of

nodes

The number of

elements

The number of

shared nodes

The number of

shared elements

Processor I 127 190 29 56

Processor II 155 308 57 110

Processor III 155 298 57 110

Processor IV 155 308 57 110

Processor V 155 298 57 110

Processor VI 155 308 57 110

Processor VII 155 310 57 110

Processor VIII 147 234 29 56

presented in Table 5.2.  The CPU time decreases significantly, as the number of

processors is increased (overall speedup factor of 1.5 with 4 processors).

The computational times required for the other test problems are shown in Table

5.3, 5.4 and 5.5.  For these three bigger models, the computational times for the linear

solver decreases considerably, as the number of processors is increased.  The linear

solver continues to be computationally the most expensive component of the simulator.

It is also observed that as the number of processors increased, solution of the linear

equations became more significant part of the overall computation (Figure 5.5).  This is

because parallel processing of decomposed domain affects the structure of linear matrix



112

Table 5.2 Parallel performance of the discrete fracture model on SGI Power Challenge:

The test problem consisted of 193 nodes and 341 triangular elements and 139 fracture

lines.

1 Processor 2 Processors 3 Processors 4 Processors

Linear solution (sec) 21 19 21 23

Coefficient (sec) 25 13 9 7

Communication (sec) 0 6.3 10.0 12.0

Overall CPU time (sec) 48 35 33 31

system the most.  Especially local solvers lost some information from the domain

decomposition (coupled matrix and vector elements).  In Figure 5.6, it is seen that

communication (message passing overhead) takes up 3~40 % of the total CPU time.

Most of communication time is involved in linear and nonlinear solution iterations.  The

overall speedup behavior is plotted in Figure 5.7.  It is observed that as the problem size

increased, superlinear performance was obtained.  This has occurred due to the memory

acess problem (Aziz and Settari, 1979 and Dowd, 1993).  Speedup factors of 9.8 (for the

problem set 4 with 8 processors), 5.6 (for the problem set 3 with 7 processors) and 4.5

(for the problem set 2 with 4 processors) were obtained as shown in Figure 5.5.
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Table 5.3 Parallel performance of a finite element, black oil model on SGI Origin 2000:

The problem set consisted of 441 nodes and 800 triangular elements.

Linear solution

(sec)

Coefficient

(sec)

Communication

(sec)

Overall CPU

time (sec)

1 Processor 38 38 0 81

2 Processors 14 14 1.7 31

3 Processors 13 8 4.9 23

4 Processors 11 6 3.8 18

5 Processors 12 5 6.1 18

Table 5.4 Parallel performance of a finite element, black oil model on SGI Origin 2000:

The problem set consisted of 676 nodes and 1250 triangular elements.

Linear solution

(sec)

Coefficient

(sec)

Communication

(sec)

Overall CPU

time (sec)

1 Processor 99 81 0 190

2 Processors 53 49 7.0 110

3 Processors 32 21 11.1 58

4 Processors 30 18 15.6 48

5 Processors 22 10.8 10.4 36

6 Processors 22 9 12.6 34

7 Processors 23 8 14.1 34
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Table 5.5 Parallel performance of a finite element, black oil model on SGI Origin 2000:

The problem set consisted of 784 nodes and 1450 triangular elements.

Linear solution

(sec)

Coefficient

(sec)

Communication

(sec)

Overall CPU

time (sec)

1 Processor 199 153 0 372

2 Processors 67 67 3.2 143

3 Processors 52 37 22.4 97

4 Processors 42 25 22.7 72

5 Processors 39 14 26.2 60

6 Processors 30 13 14.6 46

7 Processors 29 11 15.4 43

8 Processors 26 9 14.5 38
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Figure 5.5 Percentage of the total computational time taken up by the linear solver.
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Figure 5.6 Percentage of the total computation time taken up for communication

among processors.

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8

The number of nodes

M
as

sa
ge

 p
as

si
ng

 o
ve

rh
ea

d 
(%

) 

Problem 1: 193 node and 341
elements (+139 fracture lines)
Probelem 2: 441 nodes and 800
elements
Probleme 3: 676 nodes and 1250
elements
probleme 4: 784 nodes and 1450
elements



117

Figure 5.7 Overall speedup obtained for the four different test problems on SGI Origin.
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5.4 Conclusions

The new finite element discrete fracture model developed in the previous chapter

was parallelized using a simple domain decomposition scheme.  In the specific scheme

employed, boundary elements between processors were shared.  This allowed

computation (assembly) of the global matrix concurrently on all processors with parallel

communication required only on nodal variables of shared elements.  With this

parallelization strategy, highly efficient parallel performance was realized on two parallel

machines with complete portability.  In fact, superlinear performance as observed on both

machines with bigger size problems.  The superlinear performance is commonly observed

where the entire program variables do not fit inside the random access memory of the

processor. Despite the simplicity of the decomposition method, the overall parallel

performance results are satisfactory.



CHAPTER 6

SUMMARY

The primary objective of this dissertation was to develop computationally efficient

discrete fracture model for fractured oil reservoir simulation.  To make reservoir

simulators computationally efficient two basic strategies can be contemplated.

• Use of efficient linear and nonlinear solvers

• Use of parallel (multiprocessor) computational environment

In this work, the development of efficient linear solvers was undertaken on finite

difference discretization of a three-phase black oil model.  It was shown that the simpler

line-successive over relaxation method (LSOR) is almost as effective in parallel

implementation as the sophisticated conjugate gradient method, the transpose free quasi

minimal residual method (TFQMR).  Parallel implementation of the black oil simulator

resulted in reasonable speed up factors on shared and on distributed memory machines.

The idea of using the inexact Newton’s method for solving nonlinear equations was

also quite successful.  When the forcing term incorporated functional information,

computational time for one time step computation was essentially cut by half compared

to a Newton-like method.
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The new discrete fracture model developed in this dissertation was based on a

straightforward finite element discretization of the spatial domain and a direct

superposition of the matrix/fracture systems.  Results from the discrete fracture model

were compared with different homogenization methods where equivalent properties were

generated and single-porosity simulations were performed.

For validation purposes, an explicit-fracture discretization was undertaken where a

thin fracture was also divided into triangular finite elements.  Results from this explicit

representation, both in terms of saturation distributions and recovery were comparable to

the discrete fracture representation of essentially the same domain.  This comparison

essentially validated the discrete fracture model.

No matter how rigorous, the homogenization methods failed to capture the saturation

profiles observed in the discrete fracture case.  The trends in recovery were matched by

the mathematically vigorous homogenization, however homogenization method predicted

much higher recoveries for all permeability contrasts.  At higher resolution,

homogenization predictions improved.  If cross-permeability terms are included in

simulations of homogenized data sets, the saturation maps are expected to better match

the discrete fracture models.

At low permeability contrasts, the discrete fracture model showed more or less

symmetric profiles for diagonally opposing injection-producer pair.  At high permeability

contrasts, the effect of fracture network was more pronounced.  There was oil bypassing

and lower recovery.  This bypassing was enhanced at higher flow rates.

Parallel implementation of the discrete fracture model was extremely effective.

Domain decomposition with elements overlapping between processors was the idea
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employed.  Superlinear performance was observed on both shared and distributed-shared

memory machines.  This was believed to be due to the memory cache problem.



APPENDIX

PARALLEL COMMUNICATION USING MPI
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A.1 MPI library for the Parallel communication in Fortran programs

A.1.1 Basic communication functions in MPI

When the domain decomposition method applies to oil reservoir model, the data

dependence in a processor to other processors requires the proper local and global data

communications.  For the grid cells, which are at the border of the processing nodes, data

is required from the neighboring nodes. Generally, several data variables are packed into

a temporary array to be sent to the neighboring nodes.  The temporary array is then

received and unpacked at the desired node.  Separate subroutines were written to call the

MPI library for the communication purposes.  The regular send and receive message

passing functions of MPI is explained in the following section.

The study used six basic functions offered in MPI that can be used to write any

parallel program.  In addition to these functions, MPI offers more functions to add

flexibility, efficiency, robustness and convenience.  The six basic functions are as

follows.

• MPI_INIT

• MPI_COMM_SIZE

• MPI_COMM_RANK

• MPI_ISEND

• MPI_IRECV

• MPI_FINALIZE

Functions in MPI are specified by MPI and an underscore to let the compilers

know that it belongs to the message passing library.  The first step during the execution

of a main program is initialization of MPI.  MPI environment is established through
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MPI_INIT.  A header file which defines all the constants and variables supported by MPI

is included during the initialization procedure.  The initialization procedure lets the main

program know that it has to link with the MPI library for the communication

requirements during execution.  Before communications can start, the communication

configuration has to be defined.  During message exchange between various processors,

the messages are identified by tags.  As the applications vary, so do the definitions and

choices of tags.  During the implementation of a parallel program, the user defines the

number of processors to be used.  The total number of processors specified by a user are

identified through MPI_COMM_SIZE.  This call determines the total number of

processors associated with the communicator MPI_COMM_WORLD during execution

of a particular program.  The number of processors quantified through

MPI_COMM_SIZE belongs to a group that is associated with that program.  Within the

group the processors are ranked from 0 to n-1, where n is the total number of processors

specified by user.  Each processor finds its own rank by calling MPI_COMM_RANK.

Once the communication configuration is specified, the program can perform the

message passing operations as required during execution.  The two basic operations for

message passing are sending data and receiving it.  On the most parallel computers,

moving data from one process to another takes more time than moving within a single

process.  To keep a program from being lowed down, many parallel computers allow

users to start sending several messages and to proceed with other operations.  MPI

supports this approach by providing non-blocking sends and receives.  The syntax of the

operation is as follows.
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MPI_ISEND(buffer, count, datatype, destination, tag, comm, request, ierr) :

(buffer, count, datatype) defines the message to be sent; count occurrences of items of the

form datatype starting at buffer. The destination is the rank of the processor to which the

message needs to be sent.  The processor belongs to the group associated with the

communicator comm.  The message is identified by the tag associated with it.  The

receiving processor with following command receives the message sent.

MPI_IRECV(buffer, count, datatype, source, tag, comm, request, ierr) : The

message identified by the tag and originating from the processor with rank source will be

received by the processor.  The other arguments can be identified as described in

MPI_ISEND.  MPI_WAIT(request, status, ierr) may be used to wait for the completion

of such a send and receive operation.  If the message is received successfully an error free

status is returned.  Once the program is successfully completed, the MPI environment is

terminated by the call MPI_FINALIZE.  Once this command is executed, no MPI calls

can be executed.  The above mentioned basic commands can be used to develop a parallel

version of any program.

A.1.2  Cartesian domain allocation in MPI

The study used the routine of MPI for manipulating Cartesian domain

decomposition in parallel computer.  The description of the routine is as follows.

MPI_CART_CREATE(comm, ndim, dims, periods, reorder, comm2d, ierr) The routine

creates a Cartesian decomposition of the processes, with the number of dimensions given

by the ndim argument.  The number of processes in any direction can be specified by

giving a positive value to the corresponding element of dims.  The periods argument
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indicates whether the processes at the ends are connected.  By setting the argument

reorder to .true., MPI finds a good way to assign the process to the elements of the

decomposition for better performance.

A.1.3 MPI derived datatype

For a regular grid system, message communication can be achieved more

conveniently among multiple processors using the function of MPI derived datatype.

Accompanied with the basic datatypes; MPI_INTEGER, MPI_REAL and

MPI_DOUBLE_PRECISION, MPI allows a user-defined datatype specifying the length

of message as given count of occurrences in noncontiguous areas in memory.  It is a

common situation in regular grid system to send or receive arrays separated in constant

amount in memory.  The description starts with defining MPI_TYPE_VECTOR as

follows.  MPI_TYPE_VECTOR(count, blocklength, stride, oldtype, newtype, ierr):

The arguments to MPI_TYPE_VECTOR describe a block, which consists of a number of

contiguous copies of the input datatype given by the second argument.  The first

argument is the number of blocks; the second is the number of elements of the old

datatype in each block.  The old datatype is the fourth argument.  The third argument is

the stride; this is the distance in terms of the extent of the input datatype between

successive elements.  The fifth argument is the created derived datatype.  For an example,

the following simple array shows how to set the new datatype.

16 17 18 19 20
11 12 13 14 15
6 7 8 9 10
1 2 3 4 5
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MPI_TYPE_VECTOR(3,1,5,MPI_REAL,nwtype,ierr)

To commit the new datatype to the system, the following routine must be called before it

can be used.  MPI_TYPE_COMMIT(newtype, ierr).  When parallel program reaches to

exit or a new datatype is not used more, the new datatype need to be free as follows.

MPI_TYPE_FREE(newtype, ierr)
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